Issue 2, 2003

Characteristics of atomic absorption calibration curves with the transversely heated graphite furnace

Abstract

Calibration curves with two quasi-linear sections (“double sloping”) were observed for the medium volatile elements, Cr and Cu, with the use of a SIMAA 6000 graphite furnace atomic absorption spectrometer under interrupted internal gas flow conditions. If a standard transversally heated graphite atomizer (THGA) tube was shortened by 0.5 mm at both of its ends, (i.e. the gaps were enlarged between graphite furnace housing and tube ends), a stronger declination of the calibration curves resulted. Elements with fairly high diffusion coefficients (>5.8 cm2 s−1) and with short appearance time of their transients (<0.6 s), such as Cr and Cu, have shown the most characteristic sensitivity drop towards higher concentrations. This anomalous feature could be eliminated in three different ways; (1) by applying end-capped THGA tubes, (2) using mini-flow (50 cm3 min−1) conditions during the atomization stage, and (3) by adding Pd–Mg chemical modifier. For the low volatile Mo and V, the calibration curves had no irregular shape. For Ag, Co, Cr, Cu, Mn and Ni, the mini-flow settings improved the linearity of the calibration curves and extended the upper limit of the linear calibration range by a factor of 1.5–2.0. The irregular characteristic of the analytical curves was interpreted as an increased vapour loss at higher analyte concentrations through the opened ends of the standard THGA tubes. This vapour loss was associated with the significantly diverse expulsion velocities of atoms, caused by the difference in temperature and concentration gradients, when evaporating amounts of analytes with more than one order of magnitude difference.

Article information

Article type
Paper
Submitted
21 Aug 2002
Accepted
03 Dec 2002
First published
14 Jan 2003

J. Anal. At. Spectrom., 2003,18, 105-110

Characteristics of atomic absorption calibration curves with the transversely heated graphite furnace

L. Bencs, O. Szakács, N. Szoboszlai, Z. Ajtony and G. Bozsai, J. Anal. At. Spectrom., 2003, 18, 105 DOI: 10.1039/B208198A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements