Issue 1, 2003

Direct measurements of urban OH reactivity during Nashville SOS in summer 1999

Abstract

Emissions of volatile chemicals control the hydroxyl radical (OH), the atmosphere's main cleansing agent, and thus the production of secondary pollutants. Accounting for all of these chemicals can be difficult, especially in environments with mixed urban and forest emissions. The first direct measurements of the atmospheric OH reactivity, the inverse of the OH lifetime, were made as part of the Southern Oxidant Study (SOS) at Cornelia Fort Airpark in Nashville, TN in summer 1999. Measured OH reactivity was typically 11 s−1. Measured OH reactivity was 1.4 times larger than OH reactivity calculated from the sum of the products of measured chemical concentrations and their OH reaction rate coefficients. This difference is statistically significant at the 1σ uncertainty level of both the measurements and the calculations but not the 2σ uncertainty level. Measured OH reactivity was 1.3 times larger than the OH reactivity from a model that uses measured ambient concentrations of volatile organic compounds (VOCs), NO, NO2, SO2, and CO. However, it was within ∼10% of the OH reactivity from a model that includes hydrocarbon measurements made in a Nashville tunnel and scaled to the ambient CO at Cornelia Fort Airpark. These comparisons indicate that 30% of the OH reactivity in Nashville may come from short-lived highly reactive VOCs that are not usually measured in field intensive studies or by US EPA's Photochemical Assessment Monitoring Stations.

Article information

Article type
Paper
Submitted
03 May 2002
Accepted
04 Jul 2002
First published
08 Aug 2002

J. Environ. Monit., 2003,5, 68-74

Direct measurements of urban OH reactivity during Nashville SOS in summer 1999

T. A. Kovacs, W. H. Brune, H. Harder, M. Martinez, J. B. Simpas, G. J. Frost, E. Williams, T. Jobson, C. Stroud, V. Young, A. Fried and B. Wert, J. Environ. Monit., 2003, 5, 68 DOI: 10.1039/B204339D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements