Issue 7, 2002

Abstract

Computational studies have been performed on a variety of C60–porphyrin dyads, a class of donor–acceptor materials which have been a subject of considerable attention in recent years. Molecular modelling studies were carried out to clarify the relationship between molecular topology and experimentally determined rates of intramolecular electron and energy transfer in these systems. The systems studied include doubly linked cyclophane-like C60–porphyrin dyads, where structural variations were made computationally on the porphyrin and linker portions, as well as dyads with flexible polyether and rigid steroid linkers. The molecular modelling studies involved building and minimising structures of the various fullerene–porphyrin dyads, followed by molecular dynamics to find the equilibrium and lowest energy conformations. The study confirmed that attractive van der Waals interactions between porphyrin and C60 moieties cause these dyads to adopt unusual conformations in which these groups are in close proximity, often in orientations which are not readily predictable from conventional structural representations. The implications of these computational data for the design of fullereneporphyrin dyads with specific properties in the context of electron and energy transfer processes are discussed.

Graphical abstract: Molecular modelling of fullerene–porphyrin dyads

Article information

Article type
Paper
Submitted
28 Jan 2002
Accepted
18 Feb 2002
First published
09 Apr 2002

J. Mater. Chem., 2002,12, 2041-2047

Molecular modelling of fullerene–porphyrin dyads

D. I. Schuster, P. D. Jarowski, A. N. Kirschner and S. R. Wilson, J. Mater. Chem., 2002, 12, 2041 DOI: 10.1039/B201011A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements