Issue 12, 1998

Major differences in the behaviour of carbon paste and carbon fibre electrodes in a protein–lipid matrix: implications for voltammetry in vivo

Abstract

The widely documented differences in behaviour of carbon fibre electrodes (CFEs) and carbon paste electrodes (CPEs) used for neurochemical analysis in vivo were investigated. Differential staircase voltammetry was used to study the electrooxidation of ascorbic acid (AA) at CFEs and CPEs in the presence of major constituents of brain tissue, viz., protein, lipid or a mixture of both. Both electrode types were poisoned by protein, reflected in positive shifts in the AA voltammetric peak potential, and also peak broadening, following exposure of the electrodes to protein solution. In contrast, CFEs and CPEs responded very differently to exposure to lipid suspension: CFEs exhibited poisoning whereas CPEs showed enhanced electron transfer kinetics for AA. This significant difference in the response of the two carbon materials to lipid was further demonstrated by showing that lipid could reverse the poisoning caused by protein for CPEs but not CFEs. It appears, therefore, that proteins adsorb on both CPEs and CFEs, hindering electron transfer from AA to the electrode surface. Surfactant lipid molecules, in contrast, have a cleaning effect on CPEs, removing pasting oil and adsorbed proteins from the CPE surface. These results provide an explanation for the stability of CPEs in brain tissue and for the contrasting instability of CFEs in the same environment. The data also suggest that a lipid–protein matrix represents a valuable in vitro chemical model of brain tissue that should allow a truer characterisation in vitro of new and existing in vivo sensors, reducing the need for animal experiments in these studies.

Article information

Article type
Paper

Analyst, 1998,123, 2899-2903

Major differences in the behaviour of carbon paste and carbon fibre electrodes in a protein–lipid matrix: implications for voltammetry in vivo

D. A. Kane and R. D. O’Neill, Analyst, 1998, 123, 2899 DOI: 10.1039/A806942E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements