Issue 29, 2017

Development of benzylidene-methyloxazolone based AIEgens and decipherment of their working mechanism

Abstract

Based on an analogue of green fluorescent protein chromophore benzylidene-methyloxazolone (BMO), a series of fluorophores with an additional phenyl group, BMO-PH, BMO-PF, BMO-PM and BMO-PC, have been prepared and are found to be AIE-active. Their solutions are weakly emissive and their aggregation or solid states are highly emissive. Although these compounds readily undergo efficient E/Z isomerization (EZI) upon UV irradiation in solution, the intramolecular rotation around the double bond and phenyl rotation around the single bond serve as the key non-radiative decay channels to dissipate the excited-state energies. The EZI is only the phenomenal result. In aggregates, these intramolecular motions are greatly restricted by multiple intermolecular interactions, resulting in the AIE effect. To ensure a high solid-state quantum yield, prevention of detrimental π–π stacking is of essence. An additional phenyl group to BMO is found to increase the π–π distance and weaken the π–π interaction. Thus, the quantum yields are increased. Strong electron-donating groups and extended conjugation are effective at tuning the emission color bathochromically. Based on these principles, we succeeded in increasing the solid-state quantum yield up to 50% and obtaining a red emission maximum of 635 nm. Moreover, these compounds are promising for applications in photoswitches and fluorescent patterns, and their crystals are good candidates for luminescent waveguides with low light loss efficiency.

Graphical abstract: Development of benzylidene-methyloxazolone based AIEgens and decipherment of their working mechanism

Supplementary files

Article information

Article type
Paper
Submitted
11 Jun 2017
Accepted
22 Jun 2017
First published
22 Jun 2017

J. Mater. Chem. C, 2017,5, 7191-7199

Development of benzylidene-methyloxazolone based AIEgens and decipherment of their working mechanism

M. Jiang, Z. He, Y. Zhang, H. H. Y. Sung, J. W. Y. Lam, Q. Peng, Y. Yan, K. S. Wong, I. D. Williams, Y. Zhao and B. Z. Tang, J. Mater. Chem. C, 2017, 5, 7191 DOI: 10.1039/C7TC02582C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements