Issue 36, 2017

3D porous nanostructured platinum prepared using atomic layer deposition

Abstract

A robust and easy to handle 3D porous platinum structure was created via replicating the 3D channel system of an ordered mesoporous silica material using atomic layer deposition (ALD) over micrometer distances. After ALD of Pt in the silica material, the host template was digested using hydrogen fluoride (HF). A fully connected ordered Pt nanostructure was obtained with morphology and sizes corresponding to that of the pores of the host matrix, as revealed with high-resolution scanning transmission electron microscopy and electron tomography. The Pt nanostructure consisted of hexagonal Pt rods originating from the straight mesopores (11 nm) of the host structure and linking features resulting from Pt replication of the interconnecting mesopore segments (2–4 nm) present in the silica host structure. Electron tomography of partial replicas, made by incomplete infilling of Zeotile-4 material with Pt, provided insight in the connectivity and formation mechanism of the Pt nanostructure by ALD. The Pt replica was evaluated for its potential use as electrocatalyst for the hydrogen evolution reaction, one of the half-reactions of water electrolysis, and as microelectrode for biomedical sensing. The Pt replica showed high activity for the hydrogen evolution reaction and electrochemical characterization revealed a large impedance improvement in comparison with reference Pt electrodes.

Graphical abstract: 3D porous nanostructured platinum prepared using atomic layer deposition

Supplementary files

Article information

Article type
Paper
Submitted
14 Apr 2017
Accepted
26 Jun 2017
First published
28 Jun 2017

J. Mater. Chem. A, 2017,5, 19007-19016

3D porous nanostructured platinum prepared using atomic layer deposition

S. Pulinthanathu Sree, J. Dendooven, L. Geerts, R. K. Ramachandran, E. Javon, F. Ceyssens, E. Breynaert, C. E. A. Kirschhock, R. Puers, T. Altantzis, G. Van Tendeloo, S. Bals, C. Detavernier and J. A. Martens, J. Mater. Chem. A, 2017, 5, 19007 DOI: 10.1039/C7TA03257A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements