Effect of nucleoside analogue antimetabolites on the structure of PEO–PPO–PEO micelles investigated by SANS†
Abstract
The effect of three nucleoside analogue antimetabolites (5-fluorouracil, floxuridine, and gemcitabine) on the structure of Pluronic L62 copolymer micelles was investigated using small-angle neutron scattering. These antimetabolites used for cancer chemotherapy have analogous molecular structures but different molecular sizes and aqueous solubilities. It was found that the addition of the three antimetabolites slightly reduced the micellar size and aggregation number, and the micellar anisotropy. The added antimetabolites also changed the internal molecular distribution of the micelles as measured by the scattering length densities, resulting in enhanced hydration of the hydrophobic core region of the micelle. The strength of the effect was found to correlate with the molecular properties of the model drugs, i.e. a larger molecular size and a higher aqueous solubility lead to enhanced hydration of the micellar core.