Issue 48, 2017

Biosensor applications of graphene-nanocomposites bound oxidoreductive and hydrolytic enzymes

Abstract

Graphene based nanocomposites have successfully been employed for high yield and stable immobilization of oxidoreductive and hydrolytic enzymes. Enzymes immobilized both via adsorption and covalent attachment on graphene nanocomposites were found highly stable against various types of denaturants and were noticed less sensitive to inhibition mediated by their specific inhibitors. The oxidoreductases and hydrolases immobilized through graphene nanocomposites have resulted in the formation of robust biocatalysts which have easily been applied in various biosensors on their repeated uses. These nanocomposite bound enzymes have shown very high specificity, selectivity, broad ranges of linearity and sensitivity and very low detection limit. By using such types of techniques several enzymes have successfully been exploited. The results have demonstrated that in many cases the activity of enzymes was remarkably enhanced upon immobilization on such supports. Graphene mediated immobilized enzymes on electrodes have successfully been employed as biosensors for the analysis of various compounds in clinical, environmental, fuel and food samples. The compounds that have been detected by using such kinds of technology are acetylcholine, ethanol, H2O2, c, histamine, catechol, phenol, 4-CP, 3,4-DMP, 3-MP, 4-MP, 4-Cl-3-MP, 4,-Cl-2-MP, caffeic acid, 17β-estradiol, artesunate, CEA, H2S, BPA, captopril, glucose, urea, clenbuterol, Con A, OPs pesticides, paraoxon-ethyl and chlorpyrifos.

Graphical abstract: Biosensor applications of graphene-nanocomposites bound oxidoreductive and hydrolytic enzymes

Article information

Article type
Critical Review
Submitted
07 Nov 2017
Accepted
14 Nov 2017
First published
14 Nov 2017

Anal. Methods, 2017,9, 6734-6746

Biosensor applications of graphene-nanocomposites bound oxidoreductive and hydrolytic enzymes

Q. Husain, Anal. Methods, 2017, 9, 6734 DOI: 10.1039/C7AY02606D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements