Issue 41, 2017

Magnetic behaviour of bimetallic layered phases M′0.2Mn0.8PS3·0.25 H2O (M′ = ZnII, CuII, NiII, CoII)

Abstract

In this work the magnetic properties of bimetallic phases M′0.2Mn0.8PS3·0.25H2O (M′ = CoII, NiII, CuII or ZnII) have been explored and compared with those of the pristine phase MnPS3. Magnetic susceptibility, high field magnetization and electron paramagnetic resonance (EPR) studies reveal that the transition temperature between the antiferromagnetic and paramagnetic order for the pristine phase is shifted to lower values in the bimetallic phases. From magnetization measurements the critical field of the spin-flop transition is found to be dependent on the nature of the added secondary transition metal ion. EPR spectra of all compounds in the temperature range of 8–300 K present a single resonance line shape. Temperature dependence of the EPR parameters, like line width, g values and double integrated area (IDIN), are obtained from the spectra and present a scenario compatible with the magnetization results. The temperature dependence of the first derivative of the product (IDINT) shows two maxima for all samples, with exception of the CoII phase, indicating two critical temperatures, while these critical temperatures could not be clearly determined by dc susceptibility.

Graphical abstract: Magnetic behaviour of bimetallic layered phases M′0.2Mn0.8PS3·0.25 H2O (M′ = ZnII, CuII, NiII, CoII)

Supplementary files

Article information

Article type
Paper
Submitted
01 Sep 2017
Accepted
30 Sep 2017
First published
03 Oct 2017

Dalton Trans., 2017,46, 14373-14381

Magnetic behaviour of bimetallic layered phases M′0.2Mn0.8PS3·0.25 H2O (M′ = ZnII, CuII, NiII, CoII)

P. Fuentealba, C. Cortes, J. Manzur, V. Paredes-García, D. Venegas-Yazigi, I. D. A. Silva, R. C. de Santana, C. J. Magon and E. Spodine, Dalton Trans., 2017, 46, 14373 DOI: 10.1039/C7DT03249H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements