Issue 48, 2017

HyRes: a coarse-grained model for multi-scale enhanced sampling of disordered protein conformations

Abstract

Efficient coarse-grained (CG) models can be coupled with atomistic force fields to accelerate the sampling of atomistic energy landscapes in the multi-scale enhanced sampling (MSES) framework. This approach may be particularly suitable for generating atomistic conformational ensembles of intrinsically disordered proteins (IDPs). While MSES is relatively robust to inherent CG artifacts, achieving optimal sampling efficiency requires CG modeling to generate the local and long-range fluctuations that are largely consistent with those at the atomistic level. Here, we describe a new hybrid resolution CG model (HyRes) for MSES simulations of disordered protein states, which is specifically designed to provide semi-quantitative secondary structure propensities together with a qualitative description of long-range nonspecific interactions. The HyRes model contains an atomistic description of the backbone with intermediate resolution side chains. The secondary structure propensities are tuned by adjusting the backbone hydrogen-bonding strength and the ϕ/ψ torsion profile. The sizes and covalent geometries of the side chains are parameterized to reproduce distributions derived from atomistic simulations. Lennard-Jones parameters for sidechain beads are assigned to reproduce statistical potentials derived from the protein structural database, and then globally parameterized with nonspecific electrostatic interactions to reproduce the free energy profiles of pair wise interactions and the key conformational properties of model peptides. Application of HyRes to MSES simulations of small IDPs suggests that it is capable of driving faster structural transitions at the atomistic level and increasing the convergence rate compared to the Cα-only Gō-like models previously utilized. With further optimization, we believe that the new CG model could greatly improve the efficiency of MSES simulations of the larger and more complex IDPs frequently involved in cellular signalling and regulation.

Graphical abstract: HyRes: a coarse-grained model for multi-scale enhanced sampling of disordered protein conformations

Supplementary files

Article information

Article type
Paper
Submitted
02 Oct 2017
Accepted
14 Nov 2017
First published
14 Nov 2017

Phys. Chem. Chem. Phys., 2017,19, 32421-32432

HyRes: a coarse-grained model for multi-scale enhanced sampling of disordered protein conformations

X. Liu and J. Chen, Phys. Chem. Chem. Phys., 2017, 19, 32421 DOI: 10.1039/C7CP06736D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements