Issue 41, 2016

Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

Abstract

Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

Graphical abstract: Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

Supplementary files

Article information

Article type
Paper
Submitted
23 Jul 2016
Accepted
02 Sep 2016
First published
02 Sep 2016

J. Mater. Chem. A, 2016,4, 16036-16046

Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

K. Zhao, H. Hu, E. Spada, L. K. Jagadamma, B. Yan, M. Abdelsamie, Y. Yang, L. Yu, R. Munir, R. Li, G. O. N. Ndjawa and A. Amassian, J. Mater. Chem. A, 2016, 4, 16036 DOI: 10.1039/C6TA06258J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements