Issue 6, 2016

Facile synthesis of defect-induced highly-luminescent pristine MgO nanostructures for promising solid-state lighting applications

Abstract

A novel strategy was introduced to produce large-scale pristine MgO nanostructures as a feasible candidate for light harvesting applications. Herein, MgO nanostructures with a nanoflakes-/nanofibers-like morphology were synthesized by a co-precipitation route at different calcination temperatures ranging from 500 to 1100 °C and well characterized by several standard experimental techniques, such as XRD, FTIR, SEM, EDX, and TEM, to confirm the formation of MgO nanostructures. Undoped MgO nanostructures obtained at 1100 °C exhibited a strong photoluminescence (PL) emission spectrum at 668 nm (hypersensitive red) at 466 nm excitation wavelength. Moreover, these nanostructures also showed strong blue (477 nm) and red (668 nm) luminescence emissions simultaneously at an excitation wavelength of 317 nm. Further investigations probed by PL mapping demonstrated the homogeneous distribution of PL intensity throughout the MgO surfaces and time-resolved photoluminescence spectroscopy results of these nanostructures indicated a decay time of less than 10 ns. Thus, the facile synthesis of these luminescent undoped MgO nanostructures provides a potential platform to harvest white light generation (a combination of blue and red emissions) as well as their potential use in LED applications.

Graphical abstract: Facile synthesis of defect-induced highly-luminescent pristine MgO nanostructures for promising solid-state lighting applications

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2015
Accepted
11 Dec 2015
First published
15 Dec 2015

RSC Adv., 2016,6, 4960-4968

Facile synthesis of defect-induced highly-luminescent pristine MgO nanostructures for promising solid-state lighting applications

N. Jain, N. Marwaha, R. Verma, B. K. Gupta and A. K. Srivastava, RSC Adv., 2016, 6, 4960 DOI: 10.1039/C5RA21150F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements