Issue 22, 2016

Unconventional micro-/nanofabrication technologies for hybrid-scale lab-on-a-chip

Abstract

Micro-/nanofabrication-based lab-on-a-chip (LOC) technologies have recently been substantially advanced and have become widely used in various inter-/multidisciplinary research fields, including biological, (bio-)chemical, and biomedical fields. However, such hybrid-scale LOC devices are typically fabricated using microfabrication and nanofabrication processes in series, resulting in increased cost and time and low throughput issues. In this review, after briefly introducing the conventional micro-/nanofabrication technologies, we focus on unconventional micro-/nanofabrication technologies that allow us to produce either in situ micro-/nanoscale structures or master molds for additional replication processes to easily and conveniently create novel LOC devices with micro- or nanofluidic channel networks. In particular, microfabrication methods based on crack-assisted photolithography and carbon-microelectromechanical systems (C-MEMS) are described in detail because of their superior features from the viewpoint of the throughput, batch fabrication process, and mixed-scale channels/structures. In parallel with previously reported articles on conventional micro-/nanofabrication technologies, our review of unconventional micro-/nanofabrication technologies will provide a useful and practical fabrication guideline for future hybrid-scale LOC devices.

Graphical abstract: Unconventional micro-/nanofabrication technologies for hybrid-scale lab-on-a-chip

Article information

Article type
Critical Review
Submitted
22 Aug 2016
Accepted
05 Oct 2016
First published
10 Oct 2016

Lab Chip, 2016,16, 4296-4312

Unconventional micro-/nanofabrication technologies for hybrid-scale lab-on-a-chip

D. Ha, J. Hong, H. Shin and T. Kim, Lab Chip, 2016, 16, 4296 DOI: 10.1039/C6LC01058J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements