Khrystyna
Regeta
*,
Amit
Nagarkar
,
Andreas F. M.
Kilbinger
and
Michael
Allan
*
Department of Chemistry, University of Fribourg, Chemin du Musée 9, Fribourg, Switzerland. E-mail: Khrystyna.Regeta@unifr.ch; Michael.Allan@unifr.ch
First published on 8th January 2015
The effect which deformation of the double bond in trans-cyclooctene (TCO), compared to cis-cyclooctene (CCO), has on its negative ion – and indirectly on the π* virtual orbital – was studied by electron-impact spectroscopy. Differential elastic and vibrational excitation cross sections were measured at a scattering angle of θ = 135°. The vertical attachment energy (VAE) derived from the vibrational excitation spectra is 1.87 eV in TCO, only 0.09 eV lower than in the unstrained CCO, 1.96 eV. The substantial deformation of the CC bond in TCO thus stabilizes its transient negative ion by a surprisingly small amount and this effect is ascribed in part to the Pauli (steric) destabilization of the TCO π* orbital by the alkyl chain facing the π* lobes. An interesting effect is observed in the elastic cross section which is about 45% larger for TCO at low energies (∼0.4 eV), despite the similar geometrical size of the two molecules. Ramsauer–Townsend minima are observed in the elastic cross section at 0.13 and 0.12 eV for CCO and TCO, respectively. Implications of the findings on enhancement of the dienophile capacity of TCO are discussed.
Electron spectroscopies are a powerful means of studying electronic structure of molecules, providing insight into the causes of the increased reactivity. UV-photoelectron spectroscopy removes electrons from the molecules and measures the ionization energies, related to energies of the occupied orbitals by the Koopmans' theorem.7 Photoelectron spectra revealed that the π* highest occupied molecular orbital (HOMO) is destabilized by 0.29 eV in TCO relative to CCO.8 Electron impact spectroscopy inserts electrons into normally empty orbitals, generating transient negative ions (synonymously called ‘resonances’), and measures the corresponding electron attachment energies. The attachment energies are related to energies of virtual orbitals, becoming temporarily occupied in the electron collision, although the relation is less direct than in the case of the positive ions, and requires empirical scaling.9 TCO and CCO were already studied in our laboratory by the simplest version of electron impact spectroscopy, the Electron Transmission Spectroscopy (ETS).10
In the present work we make advantage of the much more sophisticated experimental techniques constructed in our laboratory in the mean time. Resonance energies, energies where the incoming electrons are temporarily captured to form a transient anion, can now be determined as enhancements of vibrational excitation, caused by geometry relaxation, a consequence of the different equilibrium geometry of the anion as compared to the neutral molecule. This avoids the problem of the large background of direct scattering encountered when resonances are deduced from elastic scattering in the ETS technique. Furthermore, the mode selectivity of the vibrational excitation yields information on the type of geometrical distortion caused by the occupation of the π* orbital. Finally, the present experiment may shed light onto the puzzling observation of the early study10 that the ETS signal, approximately given by the total scattering, decreased below the π* resonance in CCO, as expected, but increased in TCO. The present work is related to the electron impact spectroscopy study of the effect of pyramidalization on the CC bond.11
The first step of studying resonances by this method is to determine which vibrations are relevant in the sense of being significantly excited by electron impact. This is achieved by recording electron energy-loss spectra (EELS) in the energy range corresponding to vibrational excitation, as shown in Fig. 1 and 2. TCO and CCO have too many vibrational modes to be resolved by EELS, but groups of vibrations of a similar type can be recognized. Comparison with published and DFT calculated frequencies reveals that the peak at ΔE = 365 meV is due to C–H stretch vibrations and the band at ΔE = 170 meV to C–H bend vibrations. Most importantly, the CC stretch vibration is isolated and can be discerned individually at ΔE = 202 meV, with only a partial overlap with the ΔE = 170 meV peak. It is the most relevant vibrational mode for this study because it is expected to be excited by a temporary occupation of the π* orbital, which temporarily weakens the CC bond, causing a relaxation consisting of CC bond lengthening and vibrational excitation after the electron departure. Fig. 1 and 2 show that CC stretch is appreciably excited only in the spectra recorded at 2 eV energy, confirming a π* electron attachment around this energy as already reported in the early work.10 Excitation of two quanta, in the cis-compound even three quanta, may be discerned with the incident energy of 2 eV, indicating substantial relaxation of the nuclei during the resonance lifetime, and thus characteristic of a resonant mechanism, as opposed to direct excitation by dipole mechanism which favors, like IR excitation, excitation of single quanta.
The relevant features here are the intense bands which peak at 1.87 eV for TCO and at 1.96 eV for CCO and reveal the temporary electron capture into the π* orbitals. The vertical attachment energies (VAEs) given in our earlier publication10 were 1.79 eV and 1.93 eV, and are, in view of the large widths of the bands, in good agreement with the present numbers. (A small upward shift when comparing vibrational excitation data with ETS data is actually expected because of slightly different Franck–Condon factors involved in the elastic (v = 0 → 0) as compared to inelastic (v = 0 → 1) scattering.21) These VAEs may be compared to the value of 1.78 eV in the parent molecule ethene,18,19,22 and to 2.25 eV in the highly alkylated bicyclohexylidene,23 – revealing the well-known destabilization of π* orbitals by alkyl substitution.
The stabilization of the anion (and indirectly of the π* orbital) in TCO respective to CCO is only 0.09 eV. This is surprisingly small in view of the simple expectation that the change is given primarily by the decrease of the interaction parameter β (given by the overlap of the pz orbitals of which the π* MO is composed) due to the twisting of the double bond. One would thus expect a π* stabilization comparable to the destabilization of the π orbital, which is, revealed by UV-photoelectron spectroscopy, either 0.20 eV or 0.29 eV depending whether vertical or v = 0 IEs are taken. (The IEs are 8.55 and 8.84 eV (v = 0 values) and 8.80 and 9.00 eV (vertical values) for TCO and CCO, respectively.8) In search of a qualitative explanation of this asymmetry between HOMO destabilization and LUMO stabilization we point out that the alkyl chain is largely confined to the nodal plane of the π* orbital in CCO, whereas it faces the π* lobes in TCO (see Fig. 4), thus destabilizing the π* by Pauli (steric) repulsion. This effect is larger for the π* MO than for the π MO because of the more diffuse nature of the former. The effect is comparable to the destabilization of Rydberg orbitals by Pauli repulsion in highly alkylated alkenes.23
The widths (full width at half maximum) of the bands in Fig. 3 are 0.75 eV for TCO and 0.78 eV for CCO, that is, they are identical within the confidence limit. The widths of the band are given by two factors: (i) the electronic width, given via Heisenberg's uncertainty relation by the short lifetime of the transient negative ion, and (ii) by the Franck–Condon width, given by the fact that vertical electron attachment transfers the initial nuclear wavepacket to a sloped section of the potential surface of the anion. The Franck–Condon width is thus indicative of how strongly the electron attachment changes the geometry of the molecule. The electronic width of the present π* resonances, by analogy with molecules with similar π* resonances at similar energies, is judged to be about 0.1 eV so that the total widths given above are given nearly exclusively by the Franck–Condon width, thus estimated as 0.75 eV for both TCO and CCO. This width indicates a substantial change of geometry upon electron attachment, and the strong excitation of the CC stretch indicates that an important part of this change is CC bond lengthening. Somewhat surprisingly, the Franck–Condon width is nearly the same for TCO and CCO, although one may naively expect that TCO is already ‘pre-distorted’, in particular in terms of CC bond twist and pyramidalization, implying less geometry change upon electron attachment, yielding a narrower Franck–Condon width.
The spectra are given in absolute vertical units, permitting the observation that the CC stretch excitation is weaker in the trans-compound, indicating a weaker coupling of the electronic and nuclear motion. This is likely to be a consequence of a shorter interaction time, i.e., the electron departs faster in the trans-compound. This may be because the π* orbital on the twisted bond deviates more from the dπ symmetry, causing a less pure d-wave, stronger s- and p-wave contributions, providing a lesser centrifugal barrier and a path for the extra electron to ‘leak out’.16
Useful qualitative insight into the nature of the singly occupied orbitals of the transient anions is gained by considering the virtual orbitals of TCO and CCO in Fig. 4.† They are drawn at geometries of the neutral molecules to be representative of vertical attachment. It is seen that both π* orbitals extend onto the alkyl skeleton, with a appreciable contribution of the carbon atoms of the alkyl bridge extending over the CC bond in the case of TCO.
The cross sections in Fig. 5 are essentially flat above 1 eV, and there are only small differences between CCO and TCO, but below about 1 eV the cross sections increase with decreasing electron energy and the magnitude of the cross section at the peak near 0.5 eV is 45% higher for TCO than for CCO. This is surprising because the elastic scattering cross section would be expected to be given primarily by the physical size of the molecule, which is not very different for CCO and TCO. The elastic cross section at low energies is generally larger for molecules with a dipole moment and TCO does have a larger dipole moment (μ = 0.82 D) than CCO (μ = 0.43 D),27 but the dipole moments of both molecules are small and the large difference of the magnitudes of the elastic cross sections remains surprising. The difference between the elastic cross sections below the π* resonance in Fig. 5 explains the difference between the early transmission spectra,10 where the transmission signal decreased smoothly with decreasing energy below the π* resonance for CCO, but started to rise for TCO – an intriguing observation which could not be studied in further detail with the instrumentation available at the time. Deep Ramsauer–Townsend minima are seen in the elastic cross sections for both compounds, at 0.13 and 0.12 eV for CCO and TCO, respectively. Ramsauer–Townsend minima are a consequence of an anomalous transparency of an atom or a nearly-spherical molecule for very slow electrons. They were observed originally for the heavier noble gases28 and are considered to be the earliest experimental evidence for the wave nature of the electron. The elastic cross sections then rise very steeply at very low energies for both compounds. The detailed behavior of the elastic cross section can not be explained by qualitative means – it would be interesting whether a high level scattering calculation could reproduce and explain the difference between the CCO and TCO.
Our finding is also in line with the conclusion that the increased stability of the metal–olefin complex in TCO is a consequence of the CC bond being pre-relaxed in the strained olefin for the dπ (metal)–π* (olefin) bond, and not a consequence of a stabilized π* orbital.1
The large values of the CC stretch vibrational cross sections are indicative of a substantial CC bond lengthening brought by electron attachment. The nearly symmetrical shape and large width of the attachment band provide a second indication of a substantial geometry change as a consequence of the electron attachment, that is, a large difference between the adiabatic and vertical attachment energies.
The present finding that CC bond distortion has the consequences of (i) stabilizing the transient anion only to a negligible degree and (ii) destabilizing the positive ion more than stabilizing the negative ion, is not a general phenomenon. The situation is reverse for the pyramidalized alkene tricyclo[3.3.3.03,7]undec-3(7)-ene, where the positive ion is destabilized by 0.31 eV with respect to the reference compound bicyclooctene, whereas the negative ion is stabilized by 0.7 eV by pyramidalization of the CC bond.11
A final finding, not related to chemical reactivity but interesting from the point of view of electron scattering, is the large dependence of the magnitude of the elastic cross sections around 0.5 eV on structure, the cross section of TCO being about 45% larger.
Footnote |
† Shown are SCF 6-31G(d) orbitals calculated at the DFT B3LYP/6-31G(d) optimized geometries of the neutral molecules, using the Firefly code,24 based partly on GAMESS,25 and drawn by the program Molekel.26 |
This journal is © the Owner Societies 2015 |