Issue 30, 2014

Hierarchical, self-similar structure in native squid pen

Abstract

The structure of native squid pen (gladius) was investigated in two different species on different length scales. By combining microscopy, atomic force microscopy (AFM), and X-ray diffraction, the experiments probed length scales from millimetres down to nanometres. The gladii showed a hierarchical, self-similar structure in the optical experiments with fibres of different size oriented along the long axis of the gladius. The fibre-like structure was reproduced at the nanoscale in AFM measurements and fibres with diameters of 500 μm, 100 μm, 10 μm, 2 μm and 0.2 μm were observed. Their molecular structure was determined using X-ray diffraction. In the squid gladius, the chitin molecules are known to form nano-crystallites of monoclinic lattice symmetry wrapped in a protein layer, resulting in β-chitin nano-fibrils. Signals corresponding to the α-coil protein phase and β-chitin crystallites were observed in the X-ray experiments and their orientation with respect to the fibre-axis was determined. The size of a nano-fibril was estimated from the X-ray experiments to be about 150 × 300 Å. About 100 of these nano-fibrils are needed to form a 0.2 μm thick micro-fibre. We found that the molecular structure is highly anisotropic with ∼90% of the α-coils and β-chitin crystallites oriented along the fibre-axis, indicating a strong correlation between the macroscale structure and molecular orientation.

Graphical abstract: Hierarchical, self-similar structure in native squid pen

Article information

Article type
Paper
Submitted
07 Feb 2014
Accepted
16 May 2014
First published
20 May 2014

Soft Matter, 2014,10, 5541-5549

Author version available

Hierarchical, self-similar structure in native squid pen

F. Yang, R. D. Peters, H. Dies and M. C. Rheinstädter, Soft Matter, 2014, 10, 5541 DOI: 10.1039/C4SM00301B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements