Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

“On-water” synthesis of novel trisubstituted 1,3-thiazoles via microwave-assisted catalyst-free domino reactions

Shaik Karamthulla , Suman Pal , Md. Nasim Khan and Lokman H. Choudhury *
Department of Chemistry, Indian Institute of Technology Patna, Patna-800013, India. E-mail: lokman@iitp.ac.in; Fax: +91 612 227 7383; Tel: +91 612 2552038

Received 25th June 2014 , Accepted 30th July 2014

First published on 31st July 2014


Abstract

A clean, efficient and catalyst-free multicomponent domino reaction of arylglyoxals, cyclic 1,3-dicarbonyls and thioamides in aqueous media under microwave conditions is reported. A wide variety of trisubstituted thiazoles can be synthesized in good to very good yields using this green protocol. The salient features of this methodology are: catalyst-free reaction, water as reaction medium, short reaction time, good yields, use of microwave heating, and no harmful by-products.


Introduction

The selective and environmentally friendly synthesis of chemicals or required products is an enduring challenge in chemical sciences.1 Thus, in recent times, “green chemistry,” which provides guidelines for safer and more eco-friendly methods of chemical synthesis has gained significant attention both from academia and industry.2 Water is considered a unique solvent for biochemical reactions and most of the reactions in biological systems take place in water as solvent. Considering its ready availability with negligible cost, its non-toxic nature, and its safety in handling, water is considered one of the best and greenest reaction media in chemical synthesis. The major hurdle for using this excellent solvent in organic synthesis is the poor solubility of organic molecules in water. However, after the report of rate acceleration in Diels–Alder reactions3 and Claisen rearrangements4 using water as the reaction medium and the subsequent introduction of the “on water concept” by Sharpless et al.,5 the use of water as a reaction medium in organic synthesis has gained more attention.6 Apart from the solvent, some other important parameters for designing a green synthesis are pot, atom and step economy (PASE) as well as the type of catalyst used and the nature of by-products generated.7 In this direction, multicomponent domino reactions offer numerous advantages. In multicomponent domino reactions (MDRs) more than two substrates react in one pot under similar reaction conditions without the addition of any additional solvents, reagents, catalyst or altered reaction conditions, avoiding the isolation and purification of any intermediates.8 In MDRs, two or more bonds (usually C–C) are formed in one pot. Therefore, these reactions save time, cost, organic solvents, and synthetic steps and have proved to be an important tool in recent times for medicinal chemistry and drug discovery processes.

Use of microwave heating technology to access desired products has gained tremendous popularity among synthetic and medicinal chemists as it reduces reaction times dramatically from several days or hours to minutes.9 In addition to its advantage in terms of reaction time, microwave heating saves energy and cost as well as providing clean products in good to excellent yields. Multicomponent domino reactions (MDRs) in conjunction with microwave-assisted chemistry offer considerable improvements in selectivity, chemical yield, purity, reaction rate and manipulative simplicity.10 Thus, we were interested in using MW heating in our newly developed domino reactions.

Thiazoles are five-membered heterocycles with N and S heteroatoms. They are ubiquitous in natural products,11 biologically active alkaloids12 and pharmaceuticals.13 Substituted 1,3-thiazoles, especially tethered with aryl or heteroaryl groups (in the 2, 4 and 5 positions or disubstituted, such as 2,4-diaryl, 2,5-diaryl or 4,5-diaryl) are considered privileged structural motifs and have applications in various fields, such as materials science for the preparation of liquid crystals,14 cosmetics (sunscreens),15etc. In addition, they also have numerous applications in medicinal chemistry for the access of bioactive lead molecules and drug candidates.16 Some di- and trisubstituted 1,3-thiazole derivatives with their various pharmacological properties are shown in Fig. 1. Febuxostat is a urate lowering drug and inhibitor of xanthine oxidase used for the treatment of hyperuricemia and chronic gout,17 and fatostatin is a SREBP inhibitor.18 Similarly, nizatidine is a useful drug used for the treatment of peptic ulcers and gastroesophageal reflux disease.19 The thiazole moiety is also found in vitamin B1 as well as various other bioactive molecules. Thus, the design and development of novel and eco-friendly methods for synthesizing such compounds are of great interest.


image file: c4ra06239f-f1.tif
Fig. 1 Representative examples of important substituted thiazoles.

Substituted thiazoles can be synthesized either by the functionalization of a preexisting thioazole moiety,20 or directly by the cyclization of acyclic starting materials.21 The classical method for the synthesis of thiazoles is the Hantzsch method where α-haloketones react with thioamides.22 Considering the widespread applications of 1,3-thiazoles, new methods involving various reagents,23 using multi-step24 or multicomponent25 reactions are also being developed. However, from a green chemistry point of view, most of these new methods have significant limitations, such as tedious work-up procedures, low availability of starting materials, multistep syntheses, harsh reaction conditions, poor yields, long reaction times, and the requirement for inert atmospheric conditions. In addition, we realized that very limited methods are available in the literature for the one pot synthesis of trisubstituted 1,3-thiazole derivatives. Thus, in continuation of our work on the synthesis of functionalized heterocycles using multicomponent reactions26 and inspired by the diverse application of aryl tethered thiazoles, we were motivated to develop a versatile and benign method for the synthesis of thiazole derivatives (4) employing a domino reaction.

When designing an efficient and versatile multicomponent reaction, the selection of appropriate starting materials is very important. Arylglyoxals are very useful synthetic building blocks in organic synthesis where two adjacent carbonyl groups (one ketone and one aldehyde group) act as double electrophilic sites for cyclization reactions. Considering their interesting reactivities, these compounds have very recently been used in diverse two component and multicomponent reactions for the construction of various functionalized heterocycles.27 Inspired by the recent methods of arylglyoxal-based MCRs and in continuation of our work on the synthesis of functionalized heterocycles, herein we report a three component reaction of arylglyoxals, cyclic-1,3-dicarbonyls and thioamides under eco-friendly reaction conditions as shown in Scheme 1.


image file: c4ra06239f-s1.tif
Scheme 1 Synthesis of trisubstituted thiazoles by three component reactions.

Results and discussion

Initially, a mixture of phenylglyoxal monohydrate (1 mmol), 4-hydroxycoumarin (1 mmol), and thiobenzamide (1 mmol) in 5 mL EtOH was stirred at room temperature without any catalyst to synthesize the desired product 4a. We did not observe the formation of the desired product 4a even after 24 h under these conditions. The same combination at room temperature was next reacted in the presence of 20 mol% Et3N and the corresponding desired product 4a was not observed even in this case. Interestingly, in the presence of 20 mol% Et3N at reflux temperature, the same combination of reagents in ethanol afforded a 16% yield of our desired three component product after 20 hours of reaction time. Compound 4a was fully characterized by standard spectroscopic techniques (IR, 1H and 13C NMR) as well as by elemental analysis.

Encouraged by this result, we attempted to optimize the reaction by changing the reaction conditions, temperature, and solvents, and using alternative heating techniques, such as microwave irradiation. The optimization results of this reaction are summarized in Table 1. Performing the same reaction under microwave heating conditions at 120 °C in the presence of Et3N (20 mol%) in ethanol afforded a 72% yield of the desired product 4a within 15 minutes. This encouraging result prompted us to determine whether Et3N has any role in this reaction. Therefore, a similar combination of reagents was reacted under microwave conditions and in the absence of catalyst, and to our surprise, we obtained a similar yield (70%) of the desired product within 15 minutes (Table 1, entry 6). Thus, we realized that this reaction can be performed under catalyst-free conditions. We then focused our attention to optimizing the yield by changing the solvent. The reaction using water as the solvent and under microwave conditions at 120 °C afforded a higher yield than the reaction using ethanol as the solvent. The highest yield was obtained by increasing the reaction temperature to 130 °C in water under microwave conditions (Table 1, entry 9). Keeping the reaction time at 15 minutes and the temperature fixed at 130 °C, other organic solvents such as toluene, THF, acetonitrile, and DMF were also screened for the same model reaction, and in all cases, the yields obtained were lower than that of entry 9.

Table 1 Optimization of reaction conditionsa

image file: c4ra06239f-u1.tif

Entry Solvent Catalyst (20 mol%) Temp (°C) Time (min or h) Yieldb (%) Heating conditions
a Reaction conditions: phenylglyoxal monohydrate (1 mmol), 4-hydroxycoumarin (1 mmol), and thiobenzamide (1 mmol). b Isolated yield. c Time in hours. CH – conventional heating, MWH – microwave heating.
1 EtOH RT 24c 0  
2 EtOH Et3N RT 24c 0  
3 EtOH Et3N Reflux 20c 16 CH
4 Water Et3N Reflux 20c 28 CH
5 EtOH Et3N 120 15 72 MWH
6 EtOH 120 15 70 MWH
7 EtOH–water mixture (1[thin space (1/6-em)]:[thin space (1/6-em)]1) 120 15 76 MWH
8 Water 120 15 82 MWH
9 Water 130 15 89 MWH
10 Water 100 15 78 MWH
11 Water 130 20 89 MWH
12 Toluene 130 15 32 MWH
13 THF 130 15 Trace MWH
14 CH3CN 130 15 60 MWH
15 DMF 130 15 43 MWH
16 Neat 130 15 71 MWH


With the optimized reaction conditions in hand, the substrate scope of this domino reaction was investigated. Thiobenzamides bearing different substituents, such as 4-Cl and 4-OMe were found to be useful in this domino reaction to synthesize diverse thiazole derivatives. Interestingly, aliphatic thioamides such as thioacetamide also provided the corresponding three component products (4d) under similar conditions with moderate yields. Next, we tested the applicability of arylglyoxals tethered with both electron donating as well as electron withdrawing groups in this domino reaction. In all cases, the corresponding thiazole derivatives were obtained in good to very good yields. Similarly, to widen the scope of this method, the cyclic 1,3-dicarbonyls were also varied. Other cyclic 1,3-dicarbonyls, such as 4-hydroxy-1-methylquinolin-2(1H)-one, 4-hydroxy-6-methyl-2-pyrone, indane-1,3-dione and dimedone also reacted similarly to 4-hydroxycoumarin to provide the desired products in good yields, and the results are summarized in Table 2. All the products were fully characterized by IR, 1H NMR, 13C NMR and by elemental analysis.

Table 2 Domino synthesis of 1,3-thiazolesa4

image file: c4ra06239f-u2.tif

Entry Reactant 1 Reactant 2 Reactant 3 Time (min) Product 4 Yieldb (%)
a Reaction conditions: phenylglyoxal monohydrate or its derivatives (1 mmol), 1,3-dicarbonyls (1 mmol), and thioamide derivatives (1 mmol), in water at 130 °C (MW). b Isolated yield.
1 image file: c4ra06239f-u3.tif image file: c4ra06239f-u4.tif image file: c4ra06239f-u5.tif 15 image file: c4ra06239f-u6.tif 89
2 image file: c4ra06239f-u7.tif image file: c4ra06239f-u8.tif image file: c4ra06239f-u9.tif 15 image file: c4ra06239f-u10.tif 85
3 image file: c4ra06239f-u11.tif image file: c4ra06239f-u12.tif image file: c4ra06239f-u13.tif 15 image file: c4ra06239f-u14.tif 85
4 image file: c4ra06239f-u15.tif image file: c4ra06239f-u16.tif image file: c4ra06239f-u17.tif 15 image file: c4ra06239f-u18.tif 52
5 image file: c4ra06239f-u19.tif image file: c4ra06239f-u20.tif image file: c4ra06239f-u21.tif 15 image file: c4ra06239f-u22.tif 82
6 image file: c4ra06239f-u23.tif image file: c4ra06239f-u24.tif image file: c4ra06239f-u25.tif 15 image file: c4ra06239f-u26.tif 78
7 image file: c4ra06239f-u27.tif image file: c4ra06239f-u28.tif image file: c4ra06239f-u29.tif 15 image file: c4ra06239f-u30.tif 76
8 image file: c4ra06239f-u31.tif image file: c4ra06239f-u32.tif image file: c4ra06239f-u33.tif 15 image file: c4ra06239f-u34.tif 63
9 image file: c4ra06239f-u35.tif image file: c4ra06239f-u36.tif image file: c4ra06239f-u37.tif 15 image file: c4ra06239f-u38.tif 80
10 image file: c4ra06239f-u39.tif image file: c4ra06239f-u40.tif image file: c4ra06239f-u41.tif 15 image file: c4ra06239f-u42.tif 73
11 image file: c4ra06239f-u43.tif image file: c4ra06239f-u44.tif image file: c4ra06239f-u45.tif 15 image file: c4ra06239f-u46.tif 74
12 image file: c4ra06239f-u47.tif image file: c4ra06239f-u48.tif image file: c4ra06239f-u49.tif 15 image file: c4ra06239f-u50.tif 68
13 image file: c4ra06239f-u51.tif image file: c4ra06239f-u52.tif image file: c4ra06239f-u53.tif 15 image file: c4ra06239f-u54.tif 71
14 image file: c4ra06239f-u55.tif image file: c4ra06239f-u56.tif image file: c4ra06239f-u57.tif 15 image file: c4ra06239f-u58.tif 73
15 image file: c4ra06239f-u59.tif image file: c4ra06239f-u60.tif image file: c4ra06239f-u61.tif 15 image file: c4ra06239f-u62.tif 75
16 image file: c4ra06239f-u63.tif image file: c4ra06239f-u64.tif image file: c4ra06239f-u65.tif 15 image file: c4ra06239f-u66.tif 78
17 image file: c4ra06239f-u67.tif image file: c4ra06239f-u68.tif image file: c4ra06239f-u69.tif 15 image file: c4ra06239f-u70.tif 67
18 image file: c4ra06239f-u71.tif image file: c4ra06239f-u72.tif image file: c4ra06239f-u73.tif 15 image file: c4ra06239f-u74.tif 64
19 image file: c4ra06239f-u75.tif image file: c4ra06239f-u76.tif image file: c4ra06239f-u77.tif 15 image file: c4ra06239f-u78.tif 68
20 image file: c4ra06239f-u79.tif image file: c4ra06239f-u80.tif image file: c4ra06239f-u81.tif 15 image file: c4ra06239f-u82.tif 80
21 image file: c4ra06239f-u83.tif image file: c4ra06239f-u84.tif image file: c4ra06239f-u85.tif 15 image file: c4ra06239f-u86.tif 76
22 image file: c4ra06239f-u87.tif image file: c4ra06239f-u88.tif image file: c4ra06239f-u89.tif 15 image file: c4ra06239f-u90.tif 75
23 image file: c4ra06239f-u91.tif image file: c4ra06239f-u92.tif image file: c4ra06239f-u93.tif 15 image file: c4ra06239f-u94.tif 70
24 image file: c4ra06239f-u95.tif image file: c4ra06239f-u96.tif image file: c4ra06239f-u97.tif 15 image file: c4ra06239f-u98.tif 68


On the basis of the above results a plausible reaction mechanism is shown in Scheme 2. Initially, a Knoevenagel-type reaction takes place between reactants 1 and 2 to form alkene A. Then, the thioamide 3 undergoes thia-Michael addition to A, affording intermediate B, which subsequently undergoes cyclization by the loss of water to form desired product 4.


image file: c4ra06239f-s2.tif
Scheme 2 Proposed mechanism for the synthesis of 4.

Conclusion

In summary, we have developed a catalyst-free on-water microwave-assisted domino reaction for the efficient synthesis of trisubstituted 1,3-thiazole derivatives from readily available starting materials. Considering the importance of the thiazole and 4-hydroxycoumarin moieties, we expect this type of molecule will have broad applications in medicinal chemistry. Further efforts to determine the scope and diversity of these MDRs are currently underway and will be reported in due course. The reaction can be easily performed simply by mixing readily available starting materials under microwave irradiation. All the reactions took place within 15 minutes with water as the only benign by-product.

Experimental

General information

All starting materials were purchased from Sigma Aldrich and Alfa Aesar and used without further purification. NMR spectra were recorded at 400 or 500 MHz for 1H and 100 or 125 MHz for 13C in CDCl3 or DMSO-d6. Chemical shift values were reported in δ values (ppm) downfield from tetramethylsilane. Infrared (IR) spectra were recorded on a Shimadzu IR Affinity-1 FTIR spectrometer. Elemental analyses were carried out using either Elementar Vario EL III or Perkin-Elmer 2400 II elemental analyzers. Microwave irradiation was carried out with an Initiator 2.5 Microwave Synthesizer from Biotage, Uppsala, Sweden. Melting points were recorded using an SRS EZ-Melt automated melting point apparatus by the capillary method and are uncorrected.

General procedure for the synthesis of 1,3-thiazole analogues (4)

A mixture of arylglyoxal monohydrate 1 (1 mmol), 1,3-dicarbonyl derivative 2 (1 mmol), and thioamide derivative 3 (1 mmol) in 3 mL H2O was introduced into a 2–5 mL initiator reaction vial. The mixture was irradiated for 15 minutes at 130 °C and 200 W. The reaction mixture was then cooled to room temperature and the solid was filtered and washed with 95% EtOH to yield the pure product 4. Products 4n–4p, 4q, 4r and 4t were purified by column chromatography on a silica gel column using an EtOAc–hexane mixture as the eluent.
3-(2,4-Diphenylthiazol-5-yl)-4-hydroxy-2H-chromen-2-one (4a). Yield: 89%, white solid, mp 162–164 °C; IR (KBr): 3081, 2943, 1954, 1810, 1673, 1608, 1575, 1550, 1488, 1420, 1340, 1273, 1192, 1093, 1028 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 8.04 (d, J = 7.5 Hz, 2H, Ar-H), 7.94 (d, J = 7.5 Hz, 1H, Ar-H), 7.72 (d, J = 6.0 Hz, 2H, Ar-H), 7.70 (d, J = 8.5 Hz, 1H, Ar-H), 7.56 (t, J = 7.5 Hz, 2H, Ar-H), 7.52 (d, J = 7.0 Hz, 1H, Ar-H), 7.45 (d, J = 8.0 Hz, 1H, Ar-H), 7.41–7.35 (m, 3H, Ar-H), 7.30 (t, J = 7.0 Hz, 1H, Ar-H); 13C NMR (125 MHz, DMSO-d6): δ = 167.0, 164.3, 161.6, 154.3, 153.2, 135.3, 133.7, 133.5, 130.9, 129.8, 128.9, 128.5, 127.8, 126.5, 124.8, 124.5, 122.9, 116.9, 116.3, 96.5; anal. calcd for C24H15NO3S (397.45): C, 72.53; H, 3.80; N, 3.52%; found: C, 72.57; H, 3.83; N, 3.58%.
3-(2-(4-Chlorophenyl)-4-phenylthiazol-5-yl)-4-hydroxy-2H-chromen-2-one (4b). Yield: 85%, pale yellow solid, mp 257–259 °C; IR (KBr): 3083, 2941, 1957, 1811, 1677, 1618, 1573, 1550, 1498, 1423, 1349, 1263, 1196, 1097, 1032 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 8.06 (dd, J = 6.8, 1.6 Hz, 2H, Ar-H), 7.94 (dd, J = 8.0, 1.2 Hz, 1H, Ar-H), 7.73–7.68 (m, 3H, Ar-H), 7.62 (d, J = 8.4 Hz, 2H, Ar-H), 7.45 (d, J = 8.0 Hz, 1H, Ar-H), 7.41–7.35 (m, 3H, Ar-H), 7.31 (d, J = 7.2 Hz, 1H, Ar-H); 13C NMR (100 MHz, DMSO-d6): δ = 166.1, 164.7, 161.9, 154.9, 153.7, 135.9, 135.6, 134.2, 132.8, 130.3, 129.4, 129.0, 128.7, 128.3, 125.2, 124.9, 123.8, 117.4, 116.7, 96.8; anal. calcd for C24H14ClNO3S (431.89): C, 66.74; H, 3.27; N, 3.24%; found: C, 66.79; H, 3.29; N, 3.28%.
4-Hydroxy-3-(2-(4-methoxyphenyl)-4-phenylthiazol-5-yl)-2H-chromen-2-one (4c). Yield: 85%, white solid, mp 173–175 °C; IR (KBr): 2955, 2869, 2578, 1575, 1508, 1486, 1369, 1322, 1260, 1088, 1030 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 8.06 (dd, J = 6.8, 1.6 Hz, 2H, Ar-H), 7.94 (dd, J = 8.0, 1.2 Hz, 1H, Ar-H), 7.73–7.68 (m, 3H, Ar-H), 7.69 (d, J = 8.4 Hz, 2H, Ar-H), 7.45 (d, J = 8.0 Hz, 1H, Ar-H), 7.41–7.35 (m, 3H, Ar-H), 7.31 (d, J = 7.2 Hz, 1H, Ar-H), 3.88 (s, 3H, OMe); 13C NMR (100 MHz, DMSO-d6): δ = 167.4, 164.6, 162.0, 161.9, 154.4, 153.7, 135.8, 134.1, 129.3, 128.8, 128.6, 128.3, 126.8, 125.2, 124.9, 122.1, 117.4, 116.7, 115.6, 97.0, 56.3; anal. calcd for C25H17NO4S (427.47): C, 70.24; H, 4.01; N, 3.28%; found: C, 70.21; H, 4.03; N, 3.32%.
4-Hydroxy-3-(2-methyl-4-phenylthiazol-5-yl)-2H-chromen-2-one (4d). Yield: 52%, white solid, mp 211–213 °C; IR (KBr): 3049, 2905, 2869, 1700, 1653, 1609, 1564, 1527, 1496, 1472, 1423, 1336, 1221, 1179, 1157, 1081, 1034 cm−1; 1H NMR (500 MHz, CDCl3): δ = 7.86 (d, J = 7.8 Hz, 1H, Ar-H), 7.62 (d, J = 7.0, 1.5 Hz, 1H, Ar-H), 7.61–7.57 (m, 2H, Ar-H), 7.37 (d, J = 8.0 Hz, 1H, Ar-H), 7.32 (dt, 1H, J = 8.0, 1.0 Hz, ArH), 7.33–7.25 (m, 3H, Ar-H), 2.75 (s, 3H, CH3); 13C NMR (100 MHz, DMSO-d6 + CDCl3): δ = 165.3, 163.4, 161.1, 152.7, 152.1, 134.7, 132.7, 128.1, 127.5, 127.2, 123.9(2C), 121.2, 116.2, 115.7, 96.3, 18.9; anal. calcd for C19H13NO3S (335.38): C, 68.04; H, 3.91; N, 4.18%; found: C, 68.09; H, 3.94; N, 4.22%.
4-Hydroxy-3-(4-(4-methoxyphenyl)-2-phenylthiazol-5-yl)-2H-chromen-2-one (4e). Yield: 82%, white solid, mp 236–238 °C; IR (KBr): 3085, 2959, 2837, 1706, 1671, 1610, 1564, 1528, 1500, 1490, 1464, 1415, 1340, 1273, 1253, 1173, 1154, 1099, 1030 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 8.02 (d, J = 8.1, 1.5 Hz, 2H, Ar-H), 7.94 (dd, J = 7.9, 1.3 Hz, 1H, Ar-H), 7.70 (dt, J = 8.5, 1.5 Hz, 1H, Ar-H), 7.66 (d, J = 8.9 Hz, 2H, Ar-H), 7.56–7.52 (m, 3H, Ar-H), 7.45 (d, J = 8.5 Hz, 1H, Ar-H),7.39–7.38 (dt, J = 8.0, 0.5 Hz, 1H, Ar-H), 6.93 (d, J = 9.0 Hz, 2H, Ar-H), 3.73 (s, 3H, OMe); 13C NMR (125 MHz, DMSO-d6): δ = 166.3, 163.6, 161.0, 158.9, 153.6, 152.7, 133.2, 133.1, 130.3, 129.3, 128.7, 127.3, 125.9, 124.2, 124.0, 120.6, 116.5, 115.7, 113.8, 96.2, 55.0; anal. calcd for C25H17NO4S (427.47): C, 70.24; H, 4.01; N, 3.28%; found: C, 70.21; H, 4.06; N, 3.33%.
3-(2-(4-Chlorophenyl)-4-(4-methoxyphenyl)thiazol-5-yl)-4-hydroxy-2H-chromen-2-one (4f). Yield: 78%, pale yellow solid, mp 223–225 °C; IR (KBr): 3056, 2975, 2844, 1671, 1609, 1567, 1495, 1456, 1417, 1397, 1340, 1309, 1256, 1232, 1174, 1152, 1091 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 8.04 (d, J = 9.0 Hz, 2H, Ar-H), 7.94 (dd, J = 8.0, 1.5 Hz, 1H, Ar-H), 7.71 (dt, J = 8.5, 1.5 Hz, 1H, Ar-H), 7.65 (d, J = 9.0 Hz, 2H, Ar-H), 7.60 (d, J = 8.5 Hz, 2H, Ar-H), 7.45 (d, J = 8.0 Hz, 1H, Ar-H), 7.38 (t, J = 7.5 Hz, 1H, Ar-H), 6.92 (d, J = 8.5 Hz, 2H, Ar-H), 3.73 (s, 3H, OMe); 13C NMR (125 MHz, DMSO-d6): δ = 164.9, 163.7, 161.0, 159.0, 153.7, 152.7, 134.8, 133.2, 131.9, 129.3, 128.7, 127.7, 127.2, 124.2, 124.0, 121.2, 116.5, 115.7, 113.8, 96.0, 55.0; anal. calcd for C25H16ClNO4S (461.92): C, 65.00; H, 3.49; N, 3.03%; found: C, 65.02; H, 3.51; N, 3.10%.
3-(2,4-Bis(4-methoxyphenyl)thiazol-5-yl)-4-hydroxy-2H-chromen-2-one (4g). Yield: 76%, pale yellow solid, mp 249–251 °C; IR (KBr): 3015, 2903, 2840, 1706, 1675, 1653, 1609, 1569, 1520, 1496, 1459, 1417, 1340, 1304, 1257, 1173, 1153, 1093, 1029 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 7.96–7.93 (m, 3H, Ar-H), 7.70 (dt, J = 8.5, 1.5 Hz, 1H, Ar-H), 7.65 (dd, J = 7.0, 1.8 Hz, 2H, Ar-H), 7.45 (d, J = 8.0 Hz, 1H, Ar-H), 7.39 (dt, J = 8.0, 1.0 Hz, 1H, Ar-H), 7.09 (d, J = 9.0 Hz, 2H, Ar-H), 6.92 (d, J = 9.0 Hz, 2H, Ar-H), 3.84 (s, 3H, OMe), 3.72 (s, 3H, OMe); 13C NMR (125 MHz, DMSO-d6): δ = 166.2, 163.5, 161.1, 161.0, 158.9, 153.3, 152.7, 133.1, 128.6, 127.6, 127.5, 125.9, 124.2, 123.9, 119.4, 116.4, 115.8, 114.6, 113.7, 96.3, 55.3, 55.0; anal. calcd for C26H19NO5S (457.50): C, 68.26; H, 4.19; N, 3.06%; found: C, 68.29; H, 4.22; N, 3.14%.
4-Hydroxy-3-(4-(4-nitrophenyl)-2-phenylthiazol-5-yl)-2H-chromen-2-one (4h). Yield: 63%, pale yellow solid, mp 235–237 °C; IR (KBr): 3072, 2952, 1943, 1831, 1671, 1612, 1535, 1550, 1488, 1452, 1420, 1357, 1340, 1271, 1196, 1073, 1028 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 8.22 (dd, J = 6.8, 2.0 Hz, 2H, Ar-H), 8.04 (dd, J = 8.2, 2.0 Hz, 2H, Ar-H), 8.0 (dd, J = 8.9, 2.0 Hz, 2H, Ar-H), 7.94 (dd, J = 8.2, 1.3 Hz, 1H, Ar-H), 7.70 (dt, J = 8.2, 1.4 Hz, 1H, Ar-H), 7.57–7.53 (m, 3H, Ar-H), 7.45 (d, J = 8.2 Hz, 1H, Ar-H), 7.38 (t, J = 6.8 Hz, 1H, Ar-H); 13C NMR (125 MHz, DMSO-d6): δ = 167.2, 163.7, 160.9, 152.9, 151.5, 146.6, 141.1, 133.4, 132.7, 130.8, 129.4, 128.5, 126.2, 125.9, 124.3, 124.1, 123.9, 116.6, 115.9, 95.6; anal. calcd for C24H14N2O5S (442.44): C, 65.15; H, 3.19; N, 6.33%; found: C, 65.18; H, 3.21; N, 6.38%.
3-(2,4-Diphenylthiazol-5-yl)-4-hydroxy-1-methylquinolin-2(1H)-one (4i). Yield: 80%, white solid, mp 197–199 °C; IR (KBr): 3067, 2937, 2882, 1623, 1576, 1562, 1502, 1419, 1329, 1271, 1216, 1166, 1099, 1044, 983, 919, 873, 753, 700, 666, 536 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 10.91 (bs, 1H, OH), 8.03 (dd, J = 8.0, 1.5 Hz, 2H, Ar-H), 7.99 (dd, J = 8.0, 1.5 Hz, 1H, Ar-H), 7.71–7.67 (m, 3H, Ar-H), 7.56–7.53 (m, 4H, Ar-H), 7.31–7.25 (m, 4H, Ar-H), 3.62 (s, 3H, NMe); 13C NMR (125 MHz, DMSO-d6): δ = 165.9, 161.4, 159.2, 153.1, 139.5, 135.1, 133.2, 131.9, 130.2, 129.3, 128.2, 127.7, 127.3, 125.9, 124.3, 123.9, 121.6, 115.5, 114.7, 101.8, 29.4; anal. calcd for C25H18N2O2S (410.49): C, 73.15; H, 4.42; N, 6.82%; found: C, 73.18; H, 4.45; N, 6.89%.
3-(2-(4-Chlorophenyl)-4-phenylthiazol-5-yl)-4-hydroxy-1-methylquinolin-2(1H)-one (4j). Yield: 73%, pale yellow solid, mp 117–119 °C; IR (KBr): 3058, 2940, 2889, 2627, 1624, 1596, 1501, 1487, 1456, 1398, 1328, 1270, 1224, 1162, 1093, 1042, cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 10.91 (bs, 1H, OH), 8.05–8.03 (td, J = 8.5, 2.5 Hz, 2H, Ar-H), 7.68 (dd, J = 8.5, 1.0 Hz, 1H, Ar-H), 7.62–7.56 (m, 3H, Ar-H), 7.61 (dd, J = 6.5, 2.0 Hz, 2H, Ar-H), 7.55 (d, J = 8.5 Hz, 1H, ArH) 7.33–7.24 (m, 4H, Ar-H), 3.62 (s, 3H, NMe); 13C NMR (125 MHz, DMSO-d6): δ = 164.6, 161.4, 159.3, 153.2, 139.5, 134.9, 134.7, 132.0, 129.3, 128.2, 127.8, 127.6, 127.3, 124.8, 123.9, 121.7, 121.1, 115.5, 114.7, 101.7, 29.4; anal. calcd for C25H17ClN2O2S (444.93): C, 67.49; H, 3.85; N, 6.30%; found: C, 67.52; H, 3.87; N, 6.37%.
4-Hydroxy-3-(2-(4-methoxyphenyl)-4-phenylthiazol-5-yl)-1-methylquinolin-2(1H)-one (4k). Yield: 74%, white solid, mp 272–274 °C; IR (KBr): 3042, 2940, 2841, 1627, 1609, 1569, 1524, 1417, 1330, 1304, 1254, 1207, 1172, 1101, 1027 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 10.84 (bs, 1H, OH), 7.99–7.96 (m, 3H, Ar-H), 7.69–7.68 (m, 3H, Ar-H), 7.54 (d, J = 8.5 Hz, 1H, Ar-H), 7.30–7.24 (m, 4H, Ar-H), 7.10 (d, J = 9.0 Hz, 2H, Ar-H), 3.84 (s, 3H, OMe), 3.62 (s, 3H, NMe); 13C NMR (125 MHz, DMSO-d6): δ = 165.9, 161.4, 160.8, 159.2, 152.8, 139.5, 135.2, 131.9, 128.1, 127.6, 127.5, 127.3, 126.1, 123.8, 123.1, 121.6, 115.5, 114.7, 114.6, 101.9, 55.3, 29.3; anal. calcd for C26H20N2O3S (440.51): C, 70.89; H, 4.58; N, 6.36%; found: C, 70.92; H, 4.54; N, 6.39%.
4-Hydroxy-3-(4-(4-methoxyphenyl)-2-phenylthiazol-5-yl)-1-methylquinolin-2(1H)-one (4l). Yield: 68%, white solid, mp 270–272 °C; IR (KBr): 3011, 2951, 2833, 1626, 1580, 1553, 1532, 1494, 1463, 1414, 1330, 1297, 1242, 1166, 1102, 1043, 1028 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 10.73 (bs, 1H, OH), 8.01–7.98 (m, 3H, Ar-H), 7.68–7.63 (m, 3H, Ar-H), 7.53–7.48 (m, 4H, Ar-H), 7.26 (t, J = 7.5 Hz, 1H, Ar-H), 6.84 (d, J = 8.7 Hz, 2H, Ar-H), 3.72 (s, 3H, OMe), 3.64 (s, 3H, NMe); 13C NMR (100 MHz, DMSO-d6 + CDCl3): δ = 165.7, 161.5, 159.2, 158.7, 152.9, 139.5, 133.3, 131.7, 129.9, 129.1, 128.6, 127.7, 125.8, 123.9, 122.5, 121.5, 115.6, 114.5, 113.5, 101.9, 54.9, 29.3; anal. calcd for C26H20N2O3S (440.51): C, 70.89; H, 4.58; N, 6.36%; found: C, 70.92; H, 4.55; N, 6.39%.
3-(2-(4-Chlorophenyl)-4-(4-methoxyphenyl)thiazol-5-yl)-4-hydroxy-1-methylquinolin-2(1H)-one (4m). Yield: 71%, pale yellow solid, mp 256–258 °C; IR (KBr): 3066, 2950, 2838, 1627, 1611, 1575, 1495, 1456, 1443, 1413, 1328, 1296, 1248, 1179, 1091, 1030 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 10.76 (bs, 1H, OH), 8.24–8.00 (m, 3H, Ar-H), 7.98 –7.62 (m, 3H, Ar-H), 7.57–7.51 (m, 3H, Ar-H), 7.26 (dt, J = 7.3, 0.5 Hz, 1H, Ar-H), 6.86–6.83 (m, 2H, Ar-H), 3.72 (s, 3H, OMe), 3.64 (s, 3H, NMe); 13C NMR (100 MHz, DMSO-d6 + CDCl3): δ = 164.4, 161.5, 159.3, 158.8, 153.1, 139.5, 134.7, 132.1, 131.8, 129.2, 128.6, 127.5, 127.4, 123.9, 122.9, 121.5, 115.6, 114.5, 113.5, 101.8, 54.9, 29.3; anal. calcd for C26H19ClN2O3S (474.96): C, 65.75; H, 4.03; N, 5.90%; found: C, 65.78; H, 4.06; N, 5.97%.
3-(2,4-Diphenylthiazol-5-yl)-4-hydroxy-6-methyl-2H-pyran-2-one (4n). Yield: 73%, yellow solid, mp 92–94 °C; IR (KBr): 3059, 1671, 1569, 1539, 1489, 1451, 1405, 1361, 1237, 1158, 1118, 1071 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 12.10 (bs, 1H, OH), 7.98 (d, J = 7.2 Hz, 2H, Ar-H), 7.68 (d, J = 7.6 Hz, 2H, Ar-H), 7.54–7.48 (m, 3H, Ar-H), 7.39 (dt, J = 7.6, 7.2 Hz, 2H, Ar-H), 7.31 (dt, J = 7.6, 6.8 Hz, 1H, Ar-H), 6.12 (s, 1H, Ar-H), 2.25 (s, 3H, Me); 13C NMR (100 MHz, DMSO-d6): δ = 168.2, 165.7, 163.5, 162.7, 152.9, 135.3, 133.1, 130.3, 129.3, 128.3, 127.8, 127.2, 126.0, 123.2, 99.9, 92.7, 19.6; anal. calcd for C21H15NO3S (361.41): C, 69.79; H, 4.18%; N, 3.88; found: C, 69.83; H, 4.14; N, 3.94%.
3-(2-(4-Chlorophenyl)-4-phenylthiazol-5-yl)-4-hydroxy-6-methyl-2H-pyran-2-one (4o). Yield: 75%, pale yellow solid, mp 165–167 °C; IR (KBr): 3048, 2931, 2850, 2647, 1689, 1635, 1580, 1564, 1501, 1447, 1405, 1366, 1229, 1179, 1088 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 12.03 (bs, 1H, OH), 8.00 (d, J = 8.0 Hz, 2H, Ar-H), 7.67 (d, J = 7.5 Hz, 2H, Ar-H), 7.59 (d, J = 8.5 Hz, 2H, Ar-H), 7.38 (t, J = 7.0 Hz, 2H, Ar-H), 7.33–7.30 (m, 1H, Ar-H), 6.12 (s, 1H, Ar-H), 2.25 (s, 3H, Me); 13C NMR (125 MHz, DMSO-d6): δ = 168.2, 164.2, 163.5, 162.6, 152.9, 135.2, 134.8, 131.9, 129.3, 128.3, 127.8, 127.6, 127.2, 123.7, 99.9, 92.5, 19.5; anal. calcd for C21H14ClNO3S (395.86): C, 63.72; H, 3.56; N, 3.54%; found: C, 63.75; H, 3.59; N, 3.58%.
4-Hydroxy-3-(2-(4-methoxyphenyl)-4-phenylthiazol-5-yl)-6-methyl-2H-pyran-2-one (4p). Yield: 78%, pale yellow solid, mp 186–188 °C; IR (KBr): 3050, 2935, 2870, 2657, 1696, 1654, 1587, 1568, 1572, 1466, 1472, 1356, 1237, 1179, 1088 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 12.03 (bs, 1H, OH), 7.92 (dd, J = 7.0, 1.5 Hz, 2H, Ar-H), 7.68 (dd, J = 7.0, 1.5 Hz, 2H, Ar-H), 7.39–7.36 (m, 2H, Ar-H), 7.32–7.29 (m, 1H, Ar-H), 7.07 (dd, J = 8.5, 1.5 Hz, 2H, Ar-H), 6.12 (s, 1H, Ar-H), 3.80 (s, 3H, OMe), 2.21 (s, 3H, CH3); 13C NMR (125 MHz, DMSO-d6): δ = 168.1, 165.6, 163.3, 162.6, 160.9, 152.5, 135.4, 128.2, 127.6, 127.5, 127.2, 125.9, 122.0, 114.6, 99.9, 92.8, 55.3, 19.5; anal. calcd for C22H17NO4S (391.44): C, 67.50; H, 4.38; N, 3.58%; found: C, 67.53; H, 4.34; N, 3.63%.
2-(2,4-Diphenylthiazol-5-yl)-1H-indene-1,3(2H)-dione (4q). Yield: 67%, red solid, mp 76–78 °C; IR (KBr): 3066, 2880, 1708, 1677, 1600, 1560, 1447, 1349, 1292, 1237, 1202, 1151 cm−1; 1H NMR (500 MHz, CDCl3): δ = 8.06 (dd, J = 5.6, 3.1 Hz, 2H, Ar-H), 7.92 (dd, J = 5.5, 3.0 Hz, 4H, Ar-H), 7.83 (d, J = 6.9 Hz, 2H, Ar-H), 7.44–7.37 (m, 6H, Ar-H), 4.86 (s, 1H, CH); 13C NMR (125 MHz, CDCl3): δ = 196.5, 166.8, 157.9, 141.6, 136.3, 134.1, 133.4, 130.2, 129.1, 128.9, 128.7, 128.6, 126.6, 124.0, 122.9, 53.6; anal. calcd for C24H15NO2S (381.45): C, 75.57; H, 3.96; N, 3.67%; found: C, 75.61; H, 3.92; N, 6.71%.
2-(2-(4-Chlorophenyl)-4-phenylthiazol-5-yl)-1H-indene-1,3(2H)-dione (4r). Yield: 64%, red solid, mp 77–79 °C; IR (KBr): 3042, 2790, 1710, 1701, 1677, 1600, 1510, 1448, 1359, 1295, 1247, 1206, 1156 cm−1; 1H NMR (500 MHz, CDCl3): δ = 8.07–8.04 (m, 2H, Ar-H), 7.93–7.80 (m, 6H, Ar-H), 7.42–7.37 (m, 5H, Ar-H), 4.86 (s, 1H, CH); 13C NMR (125 MHz, CDCl3): δ = 196.4, 165.5, 158.1, 141.6, 136.4, 136.2, 133.9, 131.8, 129.2, 129.1, 128.8, 128.7, 127.8, 124.0, 123.2, 53.6; anal. calcd for C24H14ClNO2S (415.89): C, 69.31; H, 3.39; N, 3.37%; found: C, 69.35; H, 3.42; N, 3.42%.
3-Hydroxy-2-(2-(4-methoxyphenyl)-4-phenylthiazol-5-yl)-1H-inden-1-one (4s). Yield: 68%, red solid, mp 82–84 °C; IR (KBr): 3066, 2999, 2748, 1709, 1658, 1601, 1555, 1516, 1488, 1449, 1414, 1362, 1305, 1257, 1215, 1177, 1075, 1025, 1005 cm−1; 1H NMR (500 MHz, DMSO-d6): δ = 7.93 (d, J = 9.0 Hz, 2H, Ar-H), 7.74 (d, J = 7.0 Hz, 2H, Ar-H), 7.45–7.43 (m, 4H, Ar-H), 7.36 (t, J = 7.5 Hz, 2H, Ar-H), 7.28 (t, J = 7.0 Hz, 1H, Ar-H), 7.08 (d, J = 9.0 Hz, 2H, Ar-H), 3.83 (s, 3H, OMe); 13C NMR (125 MHz, DMSO-d6): δ = 165.1, 160.8, 151.6, 135.6, 131.7, 128.1, 127.6, 127.5, 127.4, 125.8, 122.7, 120.6, 120.1, 114.6, 101.5, 55.3; anal. calcd for C25H17NO3S (411.47): C, 72.97; H, 4.16; N, 3.40%; found: C, 72.92; H, 4.12; N, 3.43%.
2-(2,4-Diphenylthiazol-5-yl)-3-hydroxy-5,5-dimethylcyclohex-2-enone (4t). Yield: 80%, white solid, mp 204–206 °C; IR (KBr): 3062, 2959, 2867, 1637, 1575, 1486, 1360, 1260, 1177, 1146, 1118, 1072, 1018 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 11.38 (bs, 1H, OH), 7.95 (dd, J = 8.0, 1.6 Hz, 2H, Ar-H), 7.59 (d, J = 7.2 Hz, 2H, Ar-H), 7.52–7.50 (m, 3H, Ar-H), 7.38 (d, J = 7.2 Hz, 1H, Ar-H), 7.36 (d, J = 6.4 Hz, 1H, Ar-H), 7.31 (d, J = 7.2 Hz, 1H, Ar-H), 2.38 (s, 4H, 2CH2), 1.06 (s, 6H, 2CH3); 13C NMR (100 MHz, DMSO-d6 + CDCl3): δ = 165.1, 152.3, 135.5, 133.3, 129.8, 129.0, 127.9, 127.4, 127.3, 125.8, 124.8, 105.7, 46.7, 31.4, 28.0; anal. calcd for C23H21NO2S (375.48): C, 73.57; H, 5.64; N, 3.73%; found: C, 73.54; H, 5.67; N, 3.79%.
2-(2-(4-Chlorophenyl)-4-phenylthiazol-5-yl)-3-hydroxy-5,5-dimethylcyclohex-2-enone (4u). Yield: 76%, white solid, mp 206–208 °C; IR (KBr): 3081, 3004, 2834, 1673, 1608, 1569, 1517, 1486, 1467, 1417, 1343, 1305, 1177, 1098, 1029 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 11.42 (bs, 1H, OH), 7.98 (d, J = 8.4 Hz, 2H, Ar-H), 7.66 (dd, J = 8.4, 1.2 Hz, 2H, Ar-H), 7.58 (d, J = 8.8 Hz, 2H, Ar-H), 7.37 (t, J = 7.6 Hz, 1H, Ar-H), 7.33–7.31 (m, 1H, Ar-H), 7.30 (d, J = 7.2 Hz, 1H, Ar-H), 2.39 (s, 4H, 2CH2), 1.06 (s, 6H, 2CH3); 13C NMR (100 MHz, DMSO-d6): δ = 164.6, 153.4, 136.2, 135.4, 133.0, 130.2, 129.0, 128.5, 128.4, 128.3, 126.5, 106.4, 32.4, 28.9; anal. calcd for C23H20ClNO2S (409.93): C, 67.39; H, 4.92; N, 3.42%; found: C, 67.42; H, 4.95; N, 3.46%.
3-Hydroxy-2-(2-(4-methoxyphenyl)-4-phenylthiazol-5-yl)-5,5-dimethylcyclohex-2-enone (4v). Yield: 75%, yellow solid, mp 149–151 °C; IR (KBr): 2958, 2885, 2613, 1607, 1576, 1517, 1499, 1458, 1368, 1323, 1254, 1174, 1108, 1030 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 11.35 (bs, 1H, OH), 7.90–7.87 (m, 2H, Ar-H), 7.66–7.64 (m, 2H, Ar-H), 7.38–7.34 (m, 2H, Ar-H), 7.31–7.27 (m, 1H, Ar-H), 7.07 (dd, J = 7.2, 2.0 Hz, 2H, Ar-H), 3.83 (s, 3H, OCH3), 2.39 (s, 4H, 2CH2), 1.06 (s, 6H, 2CH3); 13C NMR (100 MHz, DMSO-d6): δ = 165.9, 161.6, 152.8, 136.5, 128.9, 128.3, 127.0, 124.8, 115.5, 106.6, 56.2, 32.4, 28.9; anal. calcd for C24H23NO3S (405.51): C, 71.09; H, 5.72; N, 3.45%; found: C, 71.13; H, 5.78; N, 3.48%.
3-Hydroxy-2-(4-(4-methoxyphenyl)-2-phenylthiazol-5-yl)-5,5-dimethylcyclohex-2-enone (4w). Yield: 70%, yellow solid, mp 219–221 °C; IR (KBr): 3056, 2959, 2836, 1653, 1609, 1583, 1490, 1373, 1299, 1247, 1173, 1109, 1075, 1029 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 7.95–7.92 (m, 2H, Ar-H), 7.63 (dd, J = 6.8, 2.0 Hz, 2H, Ar-H), 7.49–7.43 (m, 3H, Ar-H), 6.88 (m, 2H, Ar-H), 3.78 (s, 3H, OMe), 2.38 (s, 4H, 2CH2), 1.10 (s, 6H, 2CH3); 13C NMR (100 MHz, DMSO-d6 + CDCl3): δ = 169.9, 164.9, 158.6, 152.1, 133.4, 129.5, 128.8, 128.6, 128.1, 125.7, 123.0, 113.2, 105.9, 54.9, 46.7, 31.4, 28.1 anal. calcd for C24H23NO3S (405.51): C, 71.09; H, 5.72; N, 3.45%; found: C, 71.14; H, 5.78; N, 3.49%.
2-(2-(4-Chlorophenyl)-4-(4-methoxyphenyl)thiazol-5-yl)-3-hydroxy-5,5-dimethylcyclohex-2-enone (4x). Yield: 68%, pale yellow solid, mp 222–224 °C; IR (KBr): 3066, 2955, 2831, 2642, 1609, 1575, 1492, 1398, 1365, 1344, 1245, 1173, 1145, 1085, 1037 cm−1; 1H NMR (400 MHz, DMSO-d6): δ = 7.93 (d, J = 8.4 Hz, 2H, Ar-H), 7.61 (d, J = 8.7 Hz, 2H, Ar-H), 7.47 (d, J = 8.4 Hz, 2H, Ar-H), 6.87 (d, J = 8.6 Hz, 2H, Ar-H), 3.78 (s, 3H, OMe), 2.38 (s, 4H, 2CH2), 1.10 (s, 6H, 2CH3); 13C NMR (100 MHz, DMSO-d6 + CDCl3): δ = 163.6, 158.6, 152.3, 134.5, 132.1, 128.9, 128.6, 128.0, 127.1, 123.5, 113.2, 105.8, 54.8, 46.7, 31.3, 28.1; anal. calcd for C24H22ClNO3S (439.95): C, 65.52; H, 5.04; N, 3.18%; found: C, 65.54; H, 5.07; N, 3.23%.

Acknowledgements

L.H.C. is thankful to DST, New Delhi for financial assistance with sanction no. SR/FT/CS-042/2009 and IIT Patna for partial financial assistance as well as providing general facilities to carry out this work. S.K. and M.N.K. gratefully acknowledge CSIR for their research fellowships (SRF). SP is thankful to UGC for his research (SRF) fellowship. The authors are also grateful to SAIF, Panjab University, IICT Hyderabad and SAIF, IIT Madras for providing analytical facilities.

Notes and references

  1. (a) P. T. Anastas and J. C. Warner, in Green Chemistry: Theory and Practice, Oxford University Press, New York, 1998 Search PubMed; (b) P. Tundo, P. Anastas, D. S. Black, J. Breen, T. Collins, S. Memoli, J. Miyamoto, M. Polyakoff and W. Tumas, Pure Appl. Chem., 2000, 72, 1207 CAS; (c) P. T. Anastas and T. C. Williamson, in Green Chemistry: Designing Chemistry for the Environment, American Chemical Series Books, Washington, DC, 1996, pp. 1–20 Search PubMed.
  2. (a) P. Anastas and N. Eghbali, Chem. Soc. Rev., 2010, 39, 301 RSC; (b) R. C. Cioc, E. Ruijter and R. V. A. Orru, Green Chem., 2014, 16, 2958 RSC.
  3. (a) O. Diels and K. Alder, Liebigs Ann. Chem., 1931, 490, 243 CrossRef; (b) R. B. Woodward and H. Baer, J. Am. Chem. Soc., 1948, 70, 1161 CrossRef CAS; (c) L. C. Lane and C. H. J. Parker, U.S. Pat., 2444, 1948; (d) T. A. Eggelte, H. De Koning and H. O. Huisman, Tetrahedron, 1973, 29, 2491 CrossRef CAS; (e) R. Breslow and D. Rideout, J. Am. Chem. Soc., 1980, 102, 7816 CrossRef.
  4. (a) W. N. White and E. F. Wolfarth, J. Org. Chem., 1970, 35, 2196 CrossRef CAS; (b) R. M. Coates, B. D. Rogers, S. J. Hobbs, D. R. Peck and D. P. Curran, J. Am. Chem. Soc., 1987, 109, 1160 CrossRef CAS; (c) J. J. Gajewski, J. Jurayj, D. R. Kimbrough, M. E. Gande, B. Ganem and B. K. Carpenter, J. Am. Chem. Soc., 1987, 109, 1170 CrossRef CAS; (d) E. Brandes, P. A. Grieco and J. J. Gajewski, J. Org. Chem., 1989, 54, 515 CrossRef CAS.
  5. S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolbe and K. B. Sharpless, Angew. Chem., Int. Ed., 2005, 44, 3275 CrossRef CAS PubMed.
  6. (a) C. J. Li and T. H. Chan, Organic Reactions in Aqueous Media, John Wiley and Sons, New York, NY, 1997 Search PubMed; (b) P. A. Grieco, Organic Synthesis in Water, Blackie, Academic and Professional, London, 1998 Search PubMed; (c) V. K. Ahluwalia and R. S. Varma, Green Solvents for Organic Synthesis, Alpha Science International, Abingdon, UK, 2009 Search PubMed; (d) U. M. Lindstrom, Chem. Rev., 2002, 102, 2751 CrossRef PubMed; (e) A. Chanda and V. V. Fokin, Chem. Rev., 2009, 109, 725 CrossRef CAS PubMed; (f) R. N. Butler and A. G. Coyne, Chem. Rev., 2010, 110, 6302 CrossRef CAS PubMed; (g) M.-O. Simon and C.-J. Li, Chem. Soc. Rev., 2012, 41, 1415 RSC; (h) K. C. Majumdar, A. Taher and S. Ponra, Tetrahedron Lett., 2010, 51, 147 CrossRef CAS PubMed; (i) M. B. Gawande, V. D. B. Bonifacio, R. Luque, P. S. Branco and R. S. Varma, Chem. Soc. Rev., 2013, 42, 5522 RSC.
  7. (a) B. M. Trost, Science, 1991, 254, 1471 CAS; (b) B. M. Trost, Angew. Chem., Int. Ed. Engl., 1995, 34, 259 CrossRef CAS; (c) R. A. Sheldon, Chem. Commun., 2008, 29, 3352 RSC; (d) P. A. Clarke, A. V. Zaytsev, T. W. Morgan, A. C. Whitwood and C. Wilson, Org. Lett., 2008, 10, 2877 CrossRef CAS PubMed; (e) L. Shen, S. Cao, J. Wu, J. Zhang, H. Li, N. Liu and X. Qian, Green Chem., 2009, 11, 1414 RSC; (f) B. Devi Bala, S. M. Rajesh and S. Perumal, Green Chem., 2012, 14, 2484 RSC; (g) A. Kumar and S. Sharma, Green Chem., 2011, 13, 2017 RSC; (h) H. R. Safaei, M. Shekouhy, S. Rahmanpur and A. Shirinfeshan, Green Chem., 2012, 14, 1696 RSC; (i) N. Ma, B. Jiang, G. Zhang, S.-J. Tu, W. Wever and G. Li, Green Chem., 2010, 12, 1357 RSC; (j) Y. Gu, R. De Sousa, G. Frapper, C. Bachmann, J. Barrault and F. Jerome, Green Chem., 2009, 11, 1968 RSC; (k) J.-N. Tan, M. Li and Y. Gu, Green Chem., 2010, 12, 908 RSC; (l) S. Yan, Y. Chen, L. Liu, N. He and J. Lin, Green Chem., 2010, 12, 2043 RSC; (m) Z.-H. Zhang, X.-N. Zhang, L.-P. Mo, Y.-X. Li and F.-P. Ma, Green Chem., 2012, 14, 1502 RSC; (n) S. L. Jain, S. Singhal and B. Sain, Green Chem., 2007, 9, 740 RSC; (o) P. A. Clarke, S. Santos and W. H. C. Martin, Green Chem., 2007, 9, 438 RSC; (p) M. Zhang, H. Jiang, H. Liu and Q. Zhu, Org. Lett., 2007, 9, 4111 CrossRef CAS PubMed; (q) X. Wang, S.-Y. Wang and S.-J. Ji, Org. Lett., 2013, 15, 1954 CrossRef CAS PubMed; (r) F. Fringuelli, R. Girotti, O. Piermatti, F. Pizzo and L. Vaccaro, Org. Lett., 2006, 8, 5741 CrossRef CAS PubMed.
  8. (a) L. F. Tietze, Chem. Rev., 1996, 96, 115 CrossRef CAS PubMed; (b) R. M. Armstrong, A. P. Combs, P. A. Tempest, S. D. Brown and T. A. Keating, Acc. Chem. Res., 1996, 29, 123 CrossRef CAS; (c) L. F. Tietze and A. Modi, Med. Res. Rev., 2000, 20, 304 CrossRef CAS; (d) F. Lieby-Muller, C. Simon, T. Constantieux and J. Rodriguez, QSAR Comb. Sci., 2006, 25, 432 CrossRef CAS; (e) B. Jiang, T. Rajale, W. Wever, S.-J. Tu and G. Li, Chem.–Asian J., 2010, 5, 2318 CrossRef CAS PubMed.
  9. (a) R. Gedey, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge and J. Roussel, Tetrahedron Lett., 1986, 27, 279 CrossRef; (b) G. Majetich and R. J. Hicks, J. Microwave Power, 1995, 30, 27 Search PubMed; (c) G. Majetich and R. Hicks, Radiat. Phys. Chem., 1995, 45, 567 CrossRef CAS; (d) S. Caddick, Tetrahedron, 1995, 51, 10403 CrossRef CAS; (e) V. Sridar, Curr. Sci., 1998, 74, 446 CAS; (f) A. Fini and A. Breccia, Pure Appl. Chem., 1999, 71, 573 CrossRef CAS; (g) M. Larhed and A. Hallberg, Drug Discovery Today, 2001, 6, 406 CrossRef CAS; (h) P. Lidström, J. Tierney, B. Wathey and J. Westman, Tetrahedron, 2001, 57, 9225 CrossRef; (i) D. A. Jones, T. P. Lelyveld, S. D. Mavrofidis, S. W. Kingman and N. J. Miles, Resour., Conserv. Recycl., 2002, 34, 75 CrossRef; (j) V. Santagada, E. Perissutti and G. Caliendo, Curr. Med. Chem., 2002, 9, 1251 CrossRef CAS; (k) J. Lu, B. Yang and Y. Bai, Synth. Commun., 2002, 32, 3703 CrossRef CAS PubMed; (l) N. Kuhnert, Angew. Chem., Int. Ed., 2002, 41, 1863 CrossRef CAS; (m) A. D. L. Hoz, A. Díaz-Ortiz and A. Moreno, Curr. Org. Chem., 2004, 8, 903 CrossRef; (n) C. O. Kappe, Angew. Chem., Int. Ed., 2004, 43, 6250 CrossRef CAS PubMed; (o) A. d. l. Hoz, A. Diaz-Ortiz and A. Moreno, Chem. Soc. Rev., 2005, 34, 164 RSC; (p) C. O. Kappe and D. Dallinger, Nat. Rev. Drug Discovery, 2006, 5, 51 CrossRef CAS PubMed; (q) M. A. Surati, S. Jauhari and K. R. Desai, Arch. Appl. Sci. Res., 2012, 4, 645 Search PubMed.
  10. (a) A. Lew, P. O. Krutzik, M. E. Hart and A. R. Chamberlin, J. Comb. Chem., 2002, 4, 95 CrossRef CAS; (b) G. Minetto, L. F. Raveglia and M. Taddei, Org. Lett., 2004, 6, 389 CrossRef CAS PubMed; (c) W. S. Bremner and M. G. Organ, J. Comb. Chem., 2007, 9, 14 CrossRef CAS PubMed; (d) B. Jiang, L.-J. Cao, S.-J. Tu, W.-R. Zheng and H.-Z. Yu, J. Comb. Chem., 2009, 11, 612 CrossRef CAS PubMed; (e) L. Wen, C. Ji, Y. Li and M. Li, J. Comb. Chem., 2009, 11, 799 CrossRef CAS PubMed; (f) B. Jiang, F. Shi and S.-J. Tu, Curr. Org. Chem., 2010, 14, 357 CrossRef CAS; (g) B. Jiang, Q.-Y. Li, S.-J. Tu and G. Li, Org. Lett., 2012, 14, 5210 CrossRef CAS PubMed; (h) B. Jiang, X. Wang, H.-W. Xu, M.-S. Tu, S.-J. Tu and G. Li, Org. Lett., 2013, 15, 1540 CrossRef CAS PubMed; (i) W. Fan, Q. Ye, H.-W. Xu, B. Jiang, S.-L. Wang and S.-J. Tu, Org. Lett., 2013, 15, 2258 CrossRef CAS PubMed; (j) K. Pericherla, A. Jha, B. Khungar and A. Kumar, Org. Lett., 2013, 15, 4304 CrossRef CAS PubMed; (k) C. Val, A. Crespo, V. Yaziji, A. Coelho, J. Azuaje, A. E. Maatougui, C. Carbajales and E. Sotelo, ACS Comb. Sci., 2013, 15, 370 CrossRef CAS PubMed; (l) L.-P. Fu, Q.-Q. Shi, Y. Shi, B. Jiang and S.-J. Tu, ACS Comb. Sci., 2013, 15, 135 CrossRef CAS PubMed.
  11. (a) G. Pattenden and S. M. Thom, J. Chem. Soc., Perkin Trans. 1, 1993, 1629 RSC; (b) A. K. Todorova, F. Juettner, A. Linden, T. Pluess and W. V. Philipsborn, J. Org. Chem., 1995, 60, 7891 CrossRef CAS; (c) D. Klein, J. C. Braekman, D. Daloze, L. Hoffmann, G. Castillo and V. Demoulin, Tetrahedron Lett., 1999, 40, 695 CrossRef CAS; (d) D. J. Faulkner, Nat. Prod. Rep., 2001, 18, 1 RSC; (e) J. O. Melby, N. J. Nard and D. A. Mitchell, Curr. Opin. Chem. Biol., 2011, 15, 369 CrossRef CAS PubMed.
  12. Z. Jin, Nat. Prod. Rep., 2011, 28, 1143 RSC.
  13. (a) G. Pattenden, J. Heterocycl. Chem., 1992, 29, 607 CrossRef CAS; (b) S. K. Sharma, M. Tandon and J. W. Lown, J. Org. Chem., 2000, 65, 1102 CrossRef CAS PubMed; (c) S. I. El-Desoky, S. B. Bondock, H. A. Etman, A. A. Fadda and M. A. Metwally, Sulfur Lett., 2003, 26, 127 CrossRef CAS.
  14. (a) K. A. Trumm, H. J. Sattler, S. Postius, I. Szelenyi and W. Schunack, Arzneim. Forsch., 1985, 35, 573 CAS; (b) D. J. Kempf, H. L. Sham, K. C. Marsh, C. A. Flentge, D. Betebenner, B. E. Green, E. McDonald, S. Vasavanonda, A. Saldivar, N. E. Wideburg, W. M. Kati, L. Ruiz, C. Zhao, L. Fino, J. Patterson, A. Molla, J. J. Plattner and D. W. Norbeck, J. Med. Chem., 1998, 41, 602 CrossRef CAS PubMed; (c) A. A. Kiryanov, P. Sampson and A. J. Seed, J. Org. Chem., 2001, 66, 7925 CrossRef CAS.
  15. (a) K. Dolling, H. Zaschke and H. Schubert, J. Prakt. Chem., 1979, 321, 643 CrossRef; (b) T. Bach and S. Heuser, Tetrahedron Lett., 2000, 41, 1707 CrossRef CAS; (c) A. Mori, A. Sekiguchi, K. Masui, T. Shimada, M. Horie, K. Osakada, M. Kawamoto and T. Ikeda, J. Am. Chem. Soc., 2003, 125, 1700 CrossRef CAS PubMed.
  16. (a) K. D. Hargrave, F. K. Hess and J. T. Oliver, J. Med. Chem., 1983, 26, 1158 CrossRef CAS; (b) J. B. Sperry and D. L. Wright, Curr. Opin. Drug Discovery Dev., 2005, 8, 723 CAS; (c) T. M. Potewar, S. A. Ingale and K. V. Srinivasan, Tetrahedron, 2007, 63, 11066 CrossRef CAS PubMed; (d) Q. Qaio, R. Dominique and R. Goodnow Jr, Tetrahedron Lett., 2008, 49, 3682 CrossRef PubMed; (e) D. Thomae, E. Perspicace, Z. Xu, D. Henryon, S. Schnieder, S. Hesse, G. Kirsch and P. Seck, Tetrahedron, 2009, 65, 2982 CrossRef CAS PubMed; (f) N. Siddiqui, M. F. Arshad, W. Ahsan and M. S. Alam, Int. J. Pharm. Sci. Drug Res., 2009, 1, 136 CAS.
  17. N. L. Edwards, Rheumatology, 2009, 48, ii15 CrossRef CAS PubMed.
  18. M. Watanabe and M. Uesugi, MedChemComm, 2013, 4, 1422 RSC.
  19. K. M. Fock, N. Talley, R. Hunt, R. Fass, S. Nandurkar, S.-K. Lam, K. L. Goh and J. Sollano, J. Gastroenterol. Hepatol., 2004, 19, 357 CrossRef PubMed.
  20. (a) S. Tani, T. N. Uehara, J. Yamaguchi and K. Itami, Chem. Sci., 2014, 5, 123 RSC; (b) A. Cohen, M. D. Crozet, P. Rathelot and P. Vanelle, Green Chem., 2009, 11, 1736 RSC; (c) G. L. Turner, J. A. Morris and M. F. Greaney, Angew. Chem., 2007, 119, 8142 CrossRef; (d) K. J. Hodgetts and M. T. Kershaw, Org. Lett., 2003, 5, 2911 CrossRef CAS PubMed.
  21. (a) J. V. Metzger, in Comprehensive Heterocyclic Chemistry, ed. A. R. Katritzky and C. W. Rees, Pergamon Press, NewYork, 1984, vol. 6, p. 235 Search PubMed; (b) P. Wipf, Chem. Rev., 1995, 95, 2115 CrossRef CAS; (c) A. Dondoni and P. Merino, in Comprehensive Heterocyclic Chemistry II, ed. A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Pergamon Press, New York, 1996, vol. 3, p. 373 Search PubMed; (d) D. F. W. Cross, G. W. Kenner, R. C. Sheppard and C. E. Stehr, J. Chem. Soc., 1963, 2143 RSC; (e) Y. Hamada, M. Shibata, T. Sugiura, S. Kato and T. Shioiri, J. Org. Chem., 1987, 52, 1252 CrossRef CAS; (f) H. Maehr and R. Yang, Bioorg. Med. Chem., 1997, 5, 493 CrossRef CAS; (g) Q. Qiao, S.-S. So and R. A. Goodnow Jr, Org. Lett., 2001, 3, 3655 CrossRef CAS PubMed; (h) R. Baer and T. Masquelin, J. Comb. Chem., 2001, 3, 16 CrossRef CAS PubMed; (i) T. S. Jagodzinski, Chem. Rev., 2003, 103, 197 CrossRef CAS PubMed; (j) S.-L. You and J. W. Kelly, J. Org. Chem., 2003, 68, 9506 CrossRef CAS PubMed; (k) S. Bondock, W. Khalifa and A. A. Fadda, Eur. J. Med. Chem., 2007, 42, 948 CrossRef CAS PubMed; (l) K. M. Weiß, S. Wei and S. B. Tsogoeva, Org. Biomol. Chem., 2011, 9, 3457 RSC; (m) S. Murru and A. Nefzi, ACS Comb. Sci., 2014, 16, 39 CrossRef CAS PubMed.
  22. A. Hantzsch, Ber. Dtsch. Chem. Ges., 1888, 21, 942 CrossRef.
  23. (a) G. M. Atkins and E. M. Burgess, J. Am. Chem. Soc., 1968, 90, 4744 CrossRef CAS; (b) S. Vijay Kumar, G. Parameshwarappa and H. Ila, J. Org. Chem., 2013, 78, 7362 CrossRef PubMed.
  24. A. Dondini, Org. Biomol. Chem., 2010, 8, 3366 Search PubMed.
  25. (a) J. Kolb, B. Beck and A. Domling, Tetrahedron Lett., 2002, 43, 6897 CrossRef CAS; (b) H. Zheng, Y.-J. Mei, K. Du, X.-T. Cao and P.-F. Zhang, Molecules, 2013, 18, 13425 CrossRef CAS PubMed; (c) S. Z. Sayyed-Alangi, Z. Hossaini, F. Rostami-Charati and H. Sajjadi-Ghotabadi, Comb. Chem. High Throughput Screening, 2013, 16, 758 CrossRef CAS.
  26. (a) S. Karamthulla, S. Pal, M. N. Khan and L. H. Choudhury, RSC Adv., 2013, 3, 15576 RSC; (b) S. Karamthulla, S. Pal, M. N. Khan, T. Parvin and L. H. Choudhury, RSC Adv., 2014, 4, 15319 RSC; (c) M. N. Khan, S. Pal, T. Parvin and L. H. Choudhury, RSC Adv., 2014, 4, 3732 RSC; (d) S. Pal, M. N. Khan, S. Karamthulla and L. H. Choudhury, RSC Adv., 2013, 3, 15705 RSC; (e) S. Pal, M. N. Khan, S. Karamthulla, S. J. Abbas and L. H. Choudhury, Tetrahedron Lett., 2013, 54, 5434 CrossRef CAS PubMed; (f) S. Pal, V. Singh, P. Das and L. H. Choudhury, Bioorg. Chem., 2013, 48, 8 CrossRef CAS PubMed; (g) S. Pal, L. H. Choudhury and T. Parvin, Mol. Diversity, 2012, 16, 129 CrossRef CAS PubMed; (h) M. N. Khan, S. Pal, T. Parvin and L. H. Choudhury, RSC Adv., 2012, 2, 12305 RSC.
  27. (a) B. Eftekhari-Sis, M. Zirak and A. Akbari, Chem. Rev., 2013, 113, 2958 CrossRef CAS PubMed; (b) H. Wang, X. Liu, X. Feng, Z. Huang and D. Shi, Green Chem., 2013, 15, 3307 RSC; (c) J. Azuaje, A. El Maatougui, J. M. Pérez-Rubio, A. Coelho, F. Fernández and E. Sotelo, J. Org. Chem., 2013, 78, 4402 CrossRef CAS PubMed; (d) L.-R. Wen, T. He, M.-C. Lan and M. Li, J. Org. Chem., 2013, 78, 10617 CrossRef CAS PubMed; (e) X. Feng, Q. Wang, W. Lin, G.-L. Dou, Z.-B. Huang and D.-Q. Shi, Org. Lett., 2013, 15, 2542 CrossRef CAS PubMed; (f) A. Bunescu, Q. Wang and J. Zhu, Org. Lett., 2014, 16, 1756 CrossRef CAS PubMed; (g) H.-Y. Wang and D.-Q. Shi, ACS Comb. Sci., 2013, 15, 261 CrossRef CAS PubMed; (h) S. Karamthulla, S. Pal, M. N. Khan and L. H. Choudhury, Synlett, 2014, 25, 1926 CrossRef CAS PubMed.

Footnote

Electronic supplementary information (ESI) available: 1H NMR and 13C NMR spectra for all products are available. See DOI: 10.1039/c4ra06239f

This journal is © The Royal Society of Chemistry 2014