Issue 15, 2014

Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales

Abstract

We introduce a method to fabricate solid-state nanopores with sub-20 nm diameter in membranes with embedded metal electrodes across a 200 mm wafer using CMOS compatible semiconductor processes. Multi-layer (metal–dielectric) structures embedded in membranes were demonstrated to have high uniformity (±0.5 nm) across the wafer. Arrays of nanopores were fabricated with an average size of 18 ± 2 nm in diameter using a Reactive Ion Etching (RIE) method in lieu of TEM drilling. Shorts between the membrane-embedded metals were occasionally created after pore formation, but the RIE based pores had a much better yield (99%) of unshorted electrodes compared to TEM drilled pores (<10%). A double-stranded DNA of length 1 kbp was translocated through the multi-layer structure RIE-based nanopore demonstrating that the pores were open. The ionic current through the pore can be modulated with a gain of 3 using embedded electrodes functioning as a gate in 0.1 mM KCl aqueous solution. This fabrication approach can potentially pave the way to manufacturable nanopore arrays with the ability to electrically control the movement of single or double-stranded DNA inside the pore with embedded electrodes.

Graphical abstract: Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales

Supplementary files

Article information

Article type
Paper
Submitted
19 Dec 2013
Accepted
30 Apr 2014
First published
07 May 2014

Nanoscale, 2014,6, 8900-8906

Author version available

Fabrication of sub-20 nm nanopore arrays in membranes with embedded metal electrodes at wafer scales

J. Bai, D. Wang, S. Nam, H. Peng, R. Bruce, L. Gignac, M. Brink, E. Kratschmer, S. Rossnagel, P. Waggoner, K. Reuter, C. Wang, Y. Astier, V. Balagurusamy, B. Luan, Y. Kwark, E. Joseph, M. Guillorn, S. Polonsky, A. Royyuru, S. Papa Rao and G. Stolovitzky, Nanoscale, 2014, 6, 8900 DOI: 10.1039/C3NR06723H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements