Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases

Hemant Kumar , In-Su Kim , Sandeep Vasant More , Byung-Wook Kim and Dong-Kug Choi *
Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, 380-701, Korea. E-mail: choidk@kku.ac.kr; Fax: +82-43-840-3872; Tel: +82-43-840-3610

Received 16th July 2013

First published on 29th November 2013


Abstract

Covering: 2000 to 2013

Oxidative stress is the central component of chronic diseases. The nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) pathway is vital in the up-regulation of cytoprotective genes and enzymes in response to oxidative stress and treatment with certain dietary phytochemicals. Herein, we classify bioactive compounds derived from natural products that are Nrf2/ARE pathway activators and recapitulate the molecular mechanisms for inducing Nrf2 to provide favorable effects in experimental models of chronic diseases. Moreover, pharmacological inhibition of Nrf2 signalling has emerged as promising strategy against multi-drug resistance thereby improving the treatment efficacy. We have also enlisted natural product-derived inhibitors of Nrf2/ARE pathway.


image file: c3np70065h-p1.tif

Dong-Kug Choi

Dong-Kug Choi received his Ph.D. from the University of Tokyo in 1999 and did his postdoctoral training at Columbia University, New York. He started his faculty career at Cornell University, New York in 2002. He is currently Vice-President for Industry and Academic Research affairs and President for Industry and Academic Collaboration foundation at GLOCAL campus, and professor at the Department of Biotechnology, Konkuk University, Korea. His research mainly focuses on investigating the molecular aspects in neurodegeneration and development of novel neuroprotective agents from natural and synthetic agents.


1 Introduction

Oxidative stress plays a key role in several diseases including cancers,1–3 cardiovascular diseases,4–6 Alzheimer's disease (AD),7–9 Parkinson's disease (PD),10–12 Huntington's disease (HD),13,14 amyotrophic lateral sclerosis (ALS),15,16 atherosclerosis,17,18 chronic kidney diseases,19,20 and diabetes.21 Oxidative stress is caused by an imbalance in reactive species and the anti-oxidative stress defense systems in cells.10 These reactive species can be reactive oxygen species (ROS), reactive nitrogen species, or reactive electrophilic species. To counteract environmental stress caused by these reactive species, cells have developed adaptive, dynamic programs to maintain cellular redox homeostasis and reduce oxidative damage through a series of antioxidant molecules and detoxifying enzymes that can provide control over these reactive species either by quickly removing or detoxifying them.

The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway plays an imperative role in cellular redox homeostasis and activating this pathway is one of the main defense mechanisms against oxidative or electrophilic stress.22–26 The protective responses and induction of cytoprotective enzymes require at least three essential components: (a) cis-elements called antioxidant response elements (AREs) or electrophile-response elements (EpREs) with the core consensus sequence 5′-TGABnnnGC-3′ (where B = C, or G, or T, and the letter “n” represents any nucleotide) in their promoter regions which upstream regulatory sequences present on each gene in either single or multiple copies;26–28 (b) Nrf2, the redox-sensitive and principal transcription factor that heterodimerizes with members of the small musculoaponeurotic fibrosarcoma (Maf) family of transcription factors and recruits the general transcriptional machinery for expression of ARE-related genes;26,29,30 and (c) Kelch ECH association protein 1 (Keap1), a cytosolic repressor protein that binds to Nrf2, retaining it in cytoplasm, and promoting its proteasomal degradation.31

Natural products have contributed significantly to drug discovery, and several candidates have emerged either directly or through modification of the basic ring.32,33 Many epidemiological studies have shown that phytochemicals in vegetables and fruits reduce the risk of different kinds of cancers, age-related pathological conditions, and prevent or mitigate chronic diseases in humans.34–38 In the last few decades several studies have demonstrated the benefits of natural products counteracting oxidative stress by modulating the Nrf2/ARE pathway.34,39–49 Nrf2 activation in the animal model of neurodegenerative diseases such as AD,50 PD,51 HD,13,14 and ALS15,16 have been demonstrated to extend survival. Furthermore, clinical application of Nrf2 activation has been utilised against stress-induced disease52,53 including multiple sclerosis.54

Herein, we review the molecular mechanism of the Nrf2/ARE pathway under physiological and pathological conditions and highlight the protective role of this pathway in several chronic diseases. Furthermore, we summarize and classify >100 bioactive compounds derived from natural products that are activators of the Nrf2/ARE pathway and recapitulate molecular mechanisms for inducing Nrf2 levels to provide favorable effects in chronic diseases. Moreover, pharmacological inhibition of Nrf2 signalling has emerged as a promising strategy against multi-drug resistance thereby improving the treatment efficacy. We have also enlisted natural product-derived Nrf2 inhibitors.

2 The Nrf2/ARE signalling

The Nrf2/ARE pathway is the major pathway that responds to reactive species and redox potentials by activating phase II detoxification enzymes at the transcriptional level.55,56 Nrf2 belongs to the cap ‘n’ collar family of transcription factors with a distinct basic leucine-zipper motif.30 Nrf2 is composed of six functional domains known as Nrf2-ECH homologies (Neh) designated as Neh1–6, respectively.57 Until recently, a model of the dissociation of the cytoplasmic Nrf2/ARE complex via oxidative modification and conformational changes in a repressor protein was considered the conventional mechanism of activating the Nrf2/ARE signalling pathway. According to this model, under basal conditions, repressor Keap1 holds Nrf2 in the cytoplasm and promotes its ubiquitination,55,58–60 followed by 26S proteasomal degradation in a constitutive manner.61 In agreement with this, Nrf2 constitutively accumulates in nuclei in Keap1-knockout mice.62 Moreover, Nrf2 is released from Keap1 in the presence of Nrf2-inducing chemicals/electrophilic and/or oxidative stimulus and is translocated to the nucleus where it binds with ARE in the promoter region of its target genes thereby inducing a battery of cytoprotective genes and anti-oxidative enzymes (Fig. 1).26,29,63–67
image file: c3np70065h-f1.tif
Fig. 1 Schematic illustration of regulation of the Nrf2 pathway under constitutive and stress conditions. Nrf2 continuously undergoes proteasomal degradation in constitutive conditions. The modification of Keap1 cysteine residues results in the inhibition of the ubiquitin E3 ligase activity of the Keap1–Cul3 complex. Disruption of the Nrf2–Keap1 association is mediated by electrophiles, free radicals, or inducers of Nrf2, and leads to a diminished rate of proteolysis, thereby enhancing nuclear accumulation of Nrf2 in the nucleus. Nrf2 binds with AREs in the promoter region of its target genes and induces a battery of cytoprotective genes and anti-oxidative enzymes resulting in an adaptive response (repair and removal of damaged protein, cell survival and reduction of oxidative damage). In addition, phosphorylation of Nrf2 at serine and threonine residues by kinases is assumed to facilitate dissociation of Nrf2 from Keap1 and subsequent translocation to the nucleus.

A distinguishing feature of Keap1 is its high cysteine content, which makes it an excellent candidate as an induction sensor. Stress generated from chemicals or radiation modifies reactive cysteines of Keap1 (C151, C273, and C288), followed by protein kinase C (PKC)-mediated phosphorylation at Ser 40, which leads to dissociation of Nrf2 from Keap1 and increased translocation and transcription of Nrf2 dependent genes.60,68 Interestingly, some reports suggest that Keap1 shuttles between the nucleus and the cytoplasm via the Crm1-dependent nuclear export mechanism,69 or that Keap1 transiently enters the nucleus and targets Nrf2 for ubiquitylation; thus, indicating that both ubiquitylation and degradation occur in the nucleus.55

Another recently proposed mechanism for regulation of the Nrf2/ARE pathway by Keap1 is the “hinge and latch model”.70 In this model, a Keap1 homodimer recruits its substrate, Nrf2, by binding to conserved DLG and ETGE motifs within the regulatory Neh2 domain of Nrf2.71,72 Although the DLG and ETGE peptides bind to Keap1–DC in a similar manner, the DLG motif works as a latch to correctly position the lysines within the Nrf2 Neh2 domain for efficient ubiquitination by selectively locking and unlocking.73 Binding via the high-affinity ETGE motif and the lower-affinity DLG motif of Nrf2 provides the hinge and latch, which facilitates optimal positioning of the lysine residues for conjugation with ubiquitin. As a result, Keap1 is able to efficiently target Nrf2 for proteasomal degradation.73

Apart from the cytosolic inhibitor Keap1, several mechanisms are involved in the regulation of the Nrf2/ARE pathway. Proteins such as p6274 and p2175 compete with Keap1–Nrf2 binding, promote stabilization of Nrf2 and up-regulation of Nrf2 target genes in autophagy-deficient and oxidative conditions, respectively. CR6-interacting factor 1, is another recently discovered negative regulator of ARE-dependent gene expression that acts at the stage of Nrf2 post-translational modification.76

2.1 Protein kinase(s) in Nrf2/ARE activation

Besides direct oxidation or covalent modification of Keap1 cysteine groups, Nrf2/ARE signalling can be modulated by post-transcriptional modification of Nrf2 by kinases. Phosphorylation is one of the key steps to activate the Nrf2 pathway, but the role of individual protein kinases and phosphatases in the Nrf2/ARE signal system mainly depends on cell type. Phosphorylation of Nrf2 at serine and threonine residues by kinases such as phosphatidylinositol 3-kinase (PI3K), PKC, c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK) is assumed to facilitate the release of Nrf2 from Keap1 and subsequent translocation.77–79 PKC directly phosphorylates Nrf2 at Ser 4080 thereby promoting its dissociation from Keap1.77,81 However, certain protein kinases participate in the negative regulation of Nrf2/ARE.82,83 The Nrf2 pathway appears to be regulated positively by ERK and JNK whereas p38 MAPK confers both positive and negative regulation.84–86

2.2 Genes regulated by the Nrf2/ARE pathway

The Nrf2/ARE pathway modulates the expression of more than 500 genes.87 The target genes regulated by ARE include phase I and II detoxification enzymes, transport proteins, proteasome subunits, chaperones, growth factors and their receptors, as well as some other transcription factors (Fig. 1).31,61,88,89

These enzymes are expressed in various isoforms and are distributed in various organelles and subcellular compartments and cooperatively participate in metabolic reactions that eliminate reactive species at their sites of origin. Glutathione (GSH) is the most abundant small-molecule antioxidant that scavenges ROS and neutralizes electrophiles.90 Large-molecule antioxidant and detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase, catalase, glutathione reductase (GR), glutamate cysteine ligase (GCL), NAD(P)H:quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO-1), γ-glutamyl cysteine synthetase catalytic subunit (GCLC), γ-glutamyl cysteine synthetase modifier subunit (GCLM), glutathione S-transferase (GST), UDP-glucuronyl transferase, thioredoxin reductase, peroxiredoxin and sulfotransferase are of prime importance in protecting against oxidative stress at the cellular level.26,91,92

These expressed cytoprotective proteins are referred to as the “ultimate antioxidants,” as they are not consumed during their antioxidant actions, can catalyze a wide variety of detoxification reactions and have relatively long half-lives. Moreover, these enzymes detoxify many harmful substances by converting them to hydrophilic metabolites that can be excreted readily from the body.93 Phase II enzymes, such as NQO1 and GCS, are highly inducible in animals and humans,94 and a strong inverse relationship exists between their tissue levels and susceptibility to chemical carcinogenesis.95 Furthermore, loss of Nrf2 signalling increases susceptibility to acute toxicity, inflammation, carcinogenesis, and several chronic diseases. Nrf2 inducers exhibit their antioxidant/neuroprotective effects by up-regulating various cytoprotective enzymes and proteins. Moreover, several genes that have not been classified as antioxidants or detoxification enzymes are regulated by Nrf2. Thus, the Nrf2-downstream target genes have been expanded beyond known functions such as antioxidant, detoxification, xenobiotic-metabolizing, ubiquitin-mediated proteasomal degradation systems, intracellular redox-regulating, genes encoding transporters and genes controlling cell growth.96–98

3 The Nrf2/ARE pathway as a multiprotector

Nrf2 protects various cell types by coordinately up-regulating not only classic ARE-driven genes but also cell type-specific protective genes essential for the basic defense system of each cell type.99 The generation of Nrf2-knockout mice confirmed that Nrf2 is the major orchestrator of the cellular stress response to oxidants and electrophiles.100 Nrf2-null animals display low basal and/or inducible expression of cytoprotective genes in a variety of tissues, including liver,25,101,102 lung,98,103,104 gastrointestinal tract,102,105,106 brain,96,107,108 skin,109 and bladder.110,111 Indeed, Nrf2-knockout mice are prone to the acute damage induced by acetaminophen,112,113 ovalbumin,114 diesel exhaust,115 cigarette smoke,98,116 pentachlorophenol,117 and 4-vinylcyclohexene diepoxide118 in comparison to their wild-type counterparts. In addition, the Nrf2-knockout mice show increased tumor formation when they are exposed to carcinogens such as benzo[a]pyrene,102 diesel exhaust,115 and N-nitrosobutyl(4-hydroxybutyl)amine.110 Conversely, pharmacological or genetic activation of Nrf2 has protective effects in numerous models of chronic disease, including cancer.34,39–49,61,119 Hence, the Nrf2/ARE pathway has emerged as multiprotector at the cellular and molecular levels. Moreover, the chances of contracting a disease increase drastically with age, whereas Nrf2 activity and expression of Nrf2 downstream targets declines with age.120–123 Interestingly, most diseases have different compensatory levels of Nrf2 at the earlier and later stages. This might be because of adaptation due to increased oxidative stress, cell death and some other factors.

3.1 Role of the Nrf2/ARE pathway in neurodegenerative diseases

Neurodegenerative diseases including AD, PD, HD and ALS occur as a result of neurodegenerative processes. The Nrf2/ARE pathway has emerged as a therapeutic target for neuroprotection from neurodegenerative diseases.22,124 Patients with AD exhibit a dramatic reduction in nuclear Nrf2 within hippocampal neurons.125 Similarly, a decline in Nrf2 activity and overexpressing Nrf2 through adenovirus or increasing Nrf2 using an inducer confers neuroprotection in experimental model of AD.126,127 PD differs from AD in that Nrf2 is expressed at higher levels in neurons of PD patients,125 and experimental models of PD show greater loss of dopaminergic neurons in Nrf2-knockout mice.128,129 Furthermore, overexpression of Nrf2 or down-regulating Keap1 or Nrf2 inducers shows protective effects in animal models of PD.42,130,131

HD is an autosomal, dominantly inherited neurodegenerative disease. Similar to AD, transgenic HD mice show a decline in Nrf2 activity,132–134 and Nrf2-knockout mice are more sensitive to the detrimental effects of 3-nitropropionic acid or malonate, which causes degeneration similar to HD.135 In addition, Nrf2 inducers promote recovery of transgenic HD mice.136 ALS is caused by degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Post-mortem studies of patients with ALS show a decline in Nrf2 activity in the motor cortex and spinal cord and increased Keap1 mRNA in the motor cortex.137 Similarly, Nrf2 activity is repressed in experimental models of ALS,138,139 and increasing Nrf2 activity prevents degeneration of motor neurons.15,140 Collectively, targeting Nrf2/ARE and its downstream gene is a promising therapeutic target for neurodegenerative diseases. Several Nrf2 inducers from natural products have proven efficacy in both in vivo and in vitro models of neurological disorders.131,141–143

3.2 Role of the Nrf2/ARE pathway in chemoprotection/chemoresistance

Nrf2 is overexpressed in several types of human cancer, including cancer of the lung, oesophagus, ovary, head and neck squamous cell carcinoma, gallbladder, and skin.119,144–149 One of the probable approaches for preventing cancers is using natural products to induce cytoprotective enzymes including phase II and anti-oxidative enzymes that detoxify and eliminate harmful reactive intermediates formed from carcinogens. A variety of natural compounds exert their chemopreventive activities against a wide spectrum of cancer types by evoking the Nrf2/ARE signalling pathway.150–153 Nevertheless, the cytoprotective properties of the Nrf2/ARE pathway can be exploited by tumor cells to promote their survival. Mutational activation of Nrf2 might cause malignancy and increase chemoresistance.154–156 Chemoresistance is a major problem during the successful treatment of many cancers. Increased levels of cellular thiols, facilitated detoxification of drugs, and rapid DNA repair are associated with chemoresistance.157–159 Consistent with this notion, suppression of Nrf2 activity inhibits tumor growth and enhances the efficacy of cancer chemotherapeutic agents.160–162 Thus, Nrf2/ARE is somewhat of a double-edged sword in cancer biology with regard to the benefits and risks to cells.155,163–165 Activating Nrf2 is important for cancer chemoprevention in normal and premalignant tissues; however, Nrf2 activity provides a growth advantage by increasing the cancer chemoresistance and enhancing the tumor cell growth in fully malignant cells.166 Temporally inhibiting Nrf2-dependent cytoprotection using Nrf2 inhibitors is important to enhance a patient's response to anticancer drugs.156 Thus, Nrf2 activity could be targeted for cancer treatment as well as chemoprevention, although in different patient populations.

3.3 Role of the Nrf2/ARE pathway in liver diseases and detoxification

The liver is a multifunctional organ responsible for detoxification as well as metabolism. Nrf2 activation is observed in non-parenchymal cells including hepatic stellate cells, Kupffer cells and in parenchymal hepatocytes.167,168 Nrf2-knockout mice show greater susceptibility to liver injuries and a reduced antioxidant response to 1-bromopropane,169 chronic ethanol consumption,170 a high fat diet,171 and a methionine- and choline-deficient diet172,173 compared to those in wild-type counterparts. Activating Nrf2 using a natural product-derived activator,41 or through Keap1 knockdown and hepatocyte-specific knockout174 prevents liver injury. Conversely, autophagy-deficient mice show aberrant accumulation of p62, and develop severe liver damage. The p62 accumulation disrupts the Keap1–Nrf2 association and provokes Nrf2 stabilization and accumulation. Thus, an overproduction of p62 or a deficiency in autophagy competes with the interaction between Nrf2 and Keap1, resulting in stabilization of Nrf2 and transcriptional activation of Nrf2 target genes. The pathological process associated with p62 accumulation results in hyperactivation of Nrf2 and delineates unexpected roles of selective autophagy in controlling the transcription of cellular genes.74,175 Nrf2 is expressed ubiquitously, particularly in tissues associated with detoxification (liver and kidney) and those that are exposed to the external environment (skin, lung, and gastrointestinal tract).176 Nrf2-knockout mice show exacerbated acetaminophen (APAP) hepatotoxicity and Nrf2-knockout mice die sooner and at lower doses of APAP.112,113 Furthermore, the ability to eliminate APAP metabolites decreases in Nrf2-knockout mice and Keap1-knockdown enhances the efflux of APAP metabolites.177 Interestingly, a high level of NQO1 is also observed in human liver tissues during APAP overdose.178 Furthermore, natural compounds protect against APAP-induced hepatotoxicity by activating Nrf2.179–181

3.4 Role of the Nrf2/ARE pathway in inflammation and autoimmune diseases

The Nrf2 pathway plays an important role in acute98,182 and chronic inflammation.183 Disruption of this pathway increases susceptibility to various inflammatory conditions such as rheumatoid arthritis, asthma, emphysema, gastritis, colitis and atherosclerosis.184 Unfortunately, long-term inflammatory signalling can result in decreased Nrf2 activity and decreased antioxidant and defense capacity.185,186 Indeed, studies have demonstrated that Nrf2 responds to pro-inflammatory stimuli and rescues cells/tissues from inflammatory injury.187–189 Among the enzymes up-regulated by Nrf2, HO-1 has pronounced anti-inflammatory as well as anti-oxidative properties. The HO-1 promoter contains AREs, and activating Nrf2 enhances HO-1 expression in several cell types.24,190,191 Up-regulating HO-1 prevents the inflammatory response in various inflammatory conditions.192–194 Nrf2-knockout mice display significant enhancement of inflammatory biomarkers as compared with those in their wild-type counterparts.106,195,196 Conversely, Nrf2-activating agents inhibit inflammation in several experimental models.197–199 It has been suggested that Nrf2 is a critical regulator of the innate immune response. Nrf2-deficient mice suffer from multi-organ autoimmune inflammation, enhanced lymphoproliferation, hemolytic anemia,200,201 and develop nephritis that shares several key features with human lupus nephritis.202 Interestingly, homozygous HO-1-knockout mice develop glomerulonephritis.203 Nrf2 also plays a role in autoimmune diseases such as rheumatoid arthritis,204 lupus-like autoimmune nephritis,202 systemic lupus erythematosus,205 and multiple sclerosis.54,206

3.5 Role of the Nrf2/ARE pathway in diabetes and cardiac diseases

Oxidative stress, driven by increased production of cellular ROS and concomitant depletion of antioxidant defenses plays a key role in the pathogenesis of late diabetic complications.207,208 The Nrf2 pathway is dysregulated in diabetes through mechanisms that result in reduced Nrf2 levels and impaired Nrf2 translocation.209–211 Dysregulation of Nrf2 accelerates the pathological effect of diabetes on the heart and kidney leading to cardiomyopathy and nephropathy.212–214 Genetic activation of Nrf2 signalling by Keap1 gene hypomorphic knockdown (Keap1flox/−) markedly suppresses the onset of diabetes. Keap1flox/− also prevents high-calorie diet-induced diabetes. Moreover, oral administration of the Nrf2 inducer also attenuates diabetes in mice. Inducing Nrf2 alters genes related to antioxidation, energy consumption, and gluconeogenesis in metabolic tissues.215 Conversely, depleting Nrf2 and expression of its dependent genes compromises antioxidant capacity resulting in dysfunctional myogenic tone in diabetes that is reversed by the natural product-derived Nrf2 activator.216

Oxidative stress is an important component in the pathogenesis of many cardiovascular disorders,217 including atherosclerosis,218 hypertension,219 heart failure,220 and ischemia/reperfusion injury.221 Many of the Nrf2-regulated enzymes are essential in the pathogenesis of cardiovascular diseases.222 However, reports indicate both beneficial and detrimental effects of activating Nrf2 in the cardiovascular system.223,224 Nrf2 overexpression attenuates ROS production and hypertrophic growth in cardiomyocytes, and cardiac fibroblasts.225 Acute activation of Nrf2 is cardioprotective,226,227 but accumulating evidence suggests that chronic activation of Nrf2 may be harmful to cardiac function228,229 leading to pathophysiological processes and heart failure. Adenoviral delivery of the Nrf2 gene to rat ventricular cardiomyocytes results in high-level expression of Nrf2 in both cytosol and the nucleus.230 Clinically established fumarate derivatives activate the Nrf2 pathway and provide cardioprotection.231 Nrf2-dependent transcriptional activation of AREs also confers cardioprotection.232 Moreover, various polyphenols and flavonoids show a protective effect in cerebral ischemia.233–235

3.6 Role of the Nrf2/ARE pathway in airway and renal diseases

Nrf2 is expressed in relative abundance in tissues such as lung and kidney where detoxification reactions routinely occur.176,236 The Nrf2/ARE pathway plays an important role in airway disorders237 and renal disease.238 Lung hyperpermeability, inflammation, and epithelial cell injury are enhanced in Nrf2-knockout mice compared to those in wild-type mice. Accordingly, antioxidant enzymes are markedly suppressed along with diminished cytoprotective GSH biosynthesis and disturbed redox balance in Nrf2-knockout mice.239,240 Furthermore, Nrf2-knockout mice are more susceptible to butylated hydroxytoluene,241 chronic exposure to cigarette smoke,98 elastase,103 bleomycin,242 ovalbumin,114 and diesel exhaust particles.115 Moreover, Nrf2/ARE inducers have a protective effect in lung disorders.196,243,244 Impaired Nrf2 activity and reduced expression of its target gene products occur in experimental models of chronic kidney disease.245,246 Similarly, Nrf2-null mice are more susceptible to ferric nitrilotriacetate nephrotoxicity,247,248 ischemia–reperfusion renal injury,249 diabetic nephropathy,212 cisplatin-induced nephrotoxicity,250 accumulate renal lipid peroxides and develop lupus-like autoimmune glomerulonephritis.202,205 Conversely, the renal protective role of Nrf2 is supported by the finding that dietary Nrf2 activators protect against renal oxidative damage.251

4 The Nrf2/ARE pathway as a hormetic signalling pathway

Hormesis has long been used to describe a phenomenon in which an environmental agent induces biologically contradictory effects at different doses; most commonly there is a stimulatory or beneficial effect at low doses and an inhibitory or toxic effect at high doses.252,253 Major components of the hormetic response pathway include various stress resistance proteins such as heat-shock proteins, antioxidants, growth factors and transcription factors.253,254 The Nrf2 pathway has evolved as a hormetic pathway.255,256 Activating the Nrf2/ARE pathway plays an important role in protecting the body against oxidative stress-induced disease and drug toxicity. Moreover, the absence or low levels of Nrf2/ARE increase susceptibility to several diseases. In contrast, sustained activation leads to several diseases including multi-drug resistance, an increased chance of cancer survival and atherosclerosis (Fig. 2). Evolutionary considerations suggest that plants produce phytochemicals against insects, environmental challenges, exposure to radiation, toxins, and other infectious agents. These phytochemicals have biological activities (DNA repair, antioxidant activity, insect repellent, and many more).257 Most of the phytochemicals produced are highly concentrated in the skin of fruits and buds of vegetables. Certain phytochemicals are also produced by symbiotic bacteria or fungi that live in the plants.257 Interestingly, these fruits and vegetables normally consumed by humans fall within the low-dose stimulating range of concentrations and are beneficial for inducing cytoprotective genes and enzymes. Interestingly also, certain phytochemicals like epigallocatechin gallate (EGCG)277,342,258 and luteolin161,259 can act both as inducer and inhibitor of the Nrf2 pathway which might be explained by the hormetic mechanism.
image file: c3np70065h-f2.tif
Fig. 2 Nrf2 in the hormetic pathway. Low levels of Nrf2 (shown in grey) in conditions such as aging lead to reduced levels of cytoprotective genes and enzymes. Inducing Nrf2 using the dietary chemicals present in fruits and vegetables provides protection against various diseases (shown in green). Sustained stimulation and high levels of Nrf2 (shown in red) lead to deleterious effects such as multi-drug resistance and atherosclerosis.

5 Modulators of the Nrf2 pathway: derived from natural products

5.1 Nrf2 inducers

Inducers that increase the expression of cytoprotective genes are classified into 10 chemically distinct classes: (i) Michael acceptors (olefins or acetylenes conjugated to electron-withdrawing groups); (ii) oxidizable phenols and quinones; (iii) isothiocyanates; (iv) thiocarbamates; (v) trivalent arsenicals; (vi) dithiolethiones; (vii) hydroperoxides; (viii) vicinal dimercaptans; (ix) heavy metals; and (x) polyenes.260,261

The only common feature among these classes of compounds is their ability to react with sulfhydryl groups by alkylation, oxidation, or reduction.262,263 Electrophilicity is a common property of most known ARE inducers due to their ability to become electrophilic quinones upon auto-oxidation. However, not all electrophiles regulate ARE activity. Most of the natural product-derived Nrf2 modulators are Michael acceptors, oxidizable phenols and quinones, isothiocyanates, dithiolethiones, polyenes or vicinal dimercaptans. The following section discusses the probable mechanism by which these classes of chemicals modulate Nrf2 activity.

5.1.1 Michael acceptors. Michael acceptors (olefins or acetylenes conjugated with electron-withdrawing groups) are prominent among the chemically distinct classes of cytoprotective enzymes inducers.262,264 They undergo Michael addition with critical nucleophilic amino acids, located in a subproteome of electrophile-sensitive proteins, such as cysteine, lysine, and serine.265 They are susceptible to attack by nucleophiles and are typically found in various phytochemicals such as flavonoids, coumarins, chalcones, terpenoids, curcuminoids, cinnamic acid derivatives, and thiophenes. Important nucleophiles that likely mediate the response are highly reactive sulfhydryl groups present on a potential cellular “sensor(s)” that reacts with the inducers (natural compounds), signalling up-regulation of phase II enzymes.262 The presence of hydroxyl group(s) at the ortho position(s) on the aromatic ring(s) dramatically enhances inducer potencies.266 Michael acceptors show a bell-shaped dose–response curve, with cellular toxicity at high dosages and light chemical stress at lower concentrations with the activation of physiological hormesis in cells (Fig. 2).267

Flavonoids are composed of flavones, flavonols, flavanones, flavanols, chalcones, anthocyanins, and isoflavones. Flavonoids as such do not have electrophilic activity but are commonly known to have electron-donating antioxidant properties.268 However, flavonoid metabolites do have electrophilic activity and can covalently bind to GSH and DNA.269 Flavonoids induce the expression of NQO1 and GST via Nrf2, possibly involving upstream modulation of PKC.270 Flavonoids, particularly those with a catechol moiety, have the potential to be oxidized to quinones or semiquinones, resulting in redox cycling and production of ROS, which react with the sulfhydryl group of GSH and the cysteine residues of Keap1.270,271 Quercetin 1 is a typical polyphenol flavonoid antioxidant found in vegetables and fruits, particularly in onions, apples, tea, broccoli, red wine and grains. 1 is a powerful radical scavenger able to prevent or delay conditions that favour cellular oxidative stress.48,272 Consuming fruits and vegetables containing high amounts of 1 may be associated with a low risk of developing cancer.2731 enhances the accumulation of Nrf2, thereby inducing anti-oxidative gene expression and interaction with cellular defense systems such as NQO1, inducible nitric oxide synthase, cyclo-oxygenase, xanthine oxidase, lipoxygenase and HO-1 to increase Nrf2 levels. 1 induced Nrf2 up-regulation and Keap1 induced down-regulation, required for activation of cytoprotective genes.274–276 Dihydroquercetin 2, a dihydrophenol from Larix gmelinii shows cytoprotective effects by up-regulating Nrf2 levels.277

image file: c3np70065h-u1.tif

Chalcones are naturally-occurring substances ubiquitously present in plants, where they participate in defense strategies as antioxidants, antifungal and antimicrobial agents.278 Chalcones possess a highly electrophilic α,β-unsaturated carbonyl moiety, which is necessary for Nrf2 activation and inducing phase II detoxifying enzyme expression.279Table 1 shows the list of flavanoids and chalcones as Nrf2 activators derived from natural products.

Table 1 Natural product-derived flavanoids and chalcones as inducers of the Nrf2/ARE pathwaya
Structure no. Bioactive compound Class Source Therapeutic indication through Nrf2 activation Ref.
a Nrf2 activators increase phase II cytoprotective genes and enzymes either through increased nuclear localization and transcriptional activity of Nrf2 (*), inhibition/delay of ubiquitination and degradation of Nrf2 (#), and/or activation of kinases ($).
3 image file: c3np70065h-u2.tif Aurones Flavonoid Dipteryx odorata Chemopreventive* 280
4 image file: c3np70065h-u3.tif Baicalein Flavonoid Scutellaria baicalensis Parkinson's disease*,$ 131
5 image file: c3np70065h-u4.tif Epicatechin Flavonoid Cocoa and tea Stroke* 281
6 image file: c3np70065h-u5.tif Eriodictyol Flavonoid Dracocephalum rupestre Chemopreventive* 282
7 image file: c3np70065h-u6.tif Eriodictyol-7-O-glucoside Flavonoid D. rupestre Protection against cisplatin toxicity# 283
8 image file: c3np70065h-u7.tif Fisetin Flavonoid Fruits and vegetables Cytoprotective* 284
9 image file: c3np70065h-u8.tif Kaempferol Flavonoid Green tea, broccoli, apple and berries Chemoprotective$ 285
10 image file: c3np70065h-u9.tif Naringenin-7-O-glucoside Flavonoid D. rupestre Doxorubicin-induced toxicity*,$ 286
11 image file: c3np70065h-u10.tif Procyanidin B2 Flavonoid Cocoa, red wine and grape juice Chemopreventive*,$ 102
12 image file: c3np70065h-u11.tif Sappanchalcone Flavonoid Caesalpinia sappan Anti-inflammatory*,$ 287
13 image file: c3np70065h-u12.tif Taxifolin Flavanone Larix sibirica Chemopreventive* 288
14 image file: c3np70065h-u13.tif Isoorientin Flavone Sasa borealis Oxidative stress*,$ 289
15 image file: c3np70065h-u14.tif Genistein Isoflavones Soybean Neuroprotective* 290–292
16 image file: c3np70065h-u15.tif Puerarin Isoflavone glycoside Pueraria lobata Cytoprotective$ 293
17 image file: c3np70065h-u16.tif Dehydroglyasperin C Prenylflavonoids Glycyrrhiza uralensis Neuroprotection*,$ 294
18 image file: c3np70065h-u17.tif Icariside I Prenylflavonoids Epimedium koreanum Cytoprotective*,$ 295
19 image file: c3np70065h-u18.tif 2′,3′-Dihydroxy-4′,6′-dimethoxychalcone Chalcone Perilla frutescens Neuroprotection* 296
20 image file: c3np70065h-u19.tif 4,2′,5′-Trihydroxy-4′-methoxychalcone Chalcone Dalbergia odorifera Anti-inflammatory* 297
21 image file: c3np70065h-u20.tif Butein and phloretin Chalcones Fruits, vegetables, nuts, tea, coffee, and red wine Hepatoprotective$ 298
22 image file: c3np70065h-u21.tif
23 image file: c3np70065h-u22.tif Lucidone Chalcone Lindera erythrocarpa Inhibition of HCV replication* 299
24 image file: c3np70065h-u23.tif Okanin Chalcone Bidens pilosa Anti-inflammatory* 300
25 image file: c3np70065h-u24.tif Xanthohumol Chalcone Humulus lupulus Anti-inflammatory* 301
26 image file: c3np70065h-u25.tif Licochalcone E Retrochalcone Glycyrrhiza inflata Parkinson's disease* 142
27 image file: c3np70065h-u26.tif Phloretamide Dihydrochalcone Apples Chemopreventive* 302


Coumarins represent a diverse class of phytochemicals that are ubiquitous in the human diet. They induce the activities of cytoprotective genes and enzymes such as GST and NQO1.303–305 Auraptene 28, imperatorin 29, and isopimpinellin 30 are naturally-occurring coumarins found in citrus fruits. Auraptene and imperatorin induce murine liver cytosolic GST activities via the Nrf2/ARE mechanism and the effect was attenuated in Nrf2-knockout mice, whereas isopimpinellin induces GST and NQO1 via additional mechanisms.306 Fraxetin 31 from Fraxinus rhynchophylla shows a protective effect in atherosclerosis by increasing the protein level of HO-1 which increases the level of Nrf2 and reporter activity with the induction of antioxidant enzymes.307 Decursin 32, another coumarin isolated from Angelica gigas, causes Nrf2 activation, and HO-1 induction through activation of MAPK signal pathways which protects PC12 cells from Aβ25–35-induced oxidative cytotoxicity.308

image file: c3np70065h-u27.tif

Terpenoids, including mono-, sesqui-, di-, and tri-terpenoids, are a large and diverse class of naturally-occurring organic chemicals derived from five-carbon isoprene units assembled and modified in thousands of ways. Terpenoids are ubiquitously found in the plant kingdom and provide an important scaffold for new drug development.309 Two potent synthetic oleanane triterpenoids, 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid and its methyl ester, are derived from oleanolic acid 33. One of the possible mechanisms of these terpenoids as Nrf2 inducers is their involvement in the Michael reaction (enone) of reactive cysteine residues on the Keap1 protein.310

image file: c3np70065h-u28.tif

Oleanolic acid 33 is a pentacyclic triterpenoid compound with a widespread occurrence throughout the plant and it is a potent inducer of the Nrf2 pathway.18133 confers an adaptive survival response in atherosclerosis by activation of Nrf2 followed by up-regulation of HO-1 expression.31133 has its antioxidant activity through increasing the generation of antioxidant and the expression of Nrf2, and MAPK, mainly JNK and ERK.312Table 2 shows the list of terpenoids as Nrf2 activators derived from natural products.

Table 2 Natural product-derived terpenoids as inducers of Nrf2/ARE pathwaya
Structure no. Bioactive compound Class Source Therapeutic indication through Nrf2 activation Ref.
a Nrf2 activators increase phase II cytoprotective genes and enzymes either through increased nuclear localization and transcriptional activity of Nrf2 (*), inhibition/delay of ubiquitination and degradation of Nrf2 (#), and/or activation of kinases ($).
34 image file: c3np70065h-u29.tif Andalusol Diterpenoids Sideritis spp. Neuroprotection* 313
35 image file: c3np70065h-u30.tif Conchitriol Diterpenoids Sideritis spp. Neuroprotection* 313
36 image file: c3np70065h-u31.tif Lagascatriol Diterpenoids Sideritis spp. Neuroprotection* 313
37 image file: c3np70065h-u32.tif Kahweol Diterpene Coffee Parkinson's disease$ 314
38 image file: c3np70065h-u33.tif Kaurenoic acid Diterpenoid Aralia continentalis Anti-inflammatory* 315
39 image file: c3np70065h-u34.tif Oridonin Diterpenoid Rabdosia rubescens Arsenic-induced toxicity# 316
40 image file: c3np70065h-u35.tif Carnosic acid Diterpene Rosmarinus officinalis Neuroprotection* 317
41 image file: c3np70065h-u36.tif Carnosol Diterpene R. officinalis Neuroprotection$ 318
42 image file: c3np70065h-u37.tif Andrographolide Labdane diterpenoid Andrographis paniculata Chronic obstructive pulmonary disease* 319
43 image file: c3np70065h-u38.tif Linearol Kaurane diterpenes Sideritis spp. Cytoprotective and astroprotective* 320,321
44 image file: c3np70065h-u39.tif Sidol Kaurane diterpenes Sideritis spp. Cytoprotective and astroprotective* 320,321
45 image file: c3np70065h-u40.tif Celastrol Triterpenoid Tripterygium wilfordii Anti-inflammatory$ 322
46 image file: c3np70065h-u41.tif Ganodermanondiol Triterpene Ganoderma lucidum Hepatoprotective* 323
47 image file: c3np70065h-u42.tif Maslinic acid Triterpene Coleus tuberosus Cytoprotective* 324
48 image file: c3np70065h-u43.tif Costunolide Sesquiterpene lactones Saussurea lappa Anti-inflammatory* 325
49 image file: c3np70065h-u44.tif Pulchellamin G Sesquiterpene lactone Saussurea pulchella Anti-inflammatory* 326
50 image file: c3np70065h-u45.tif Isoalantolactone Sesquiterpene lactone Inula helenium Chemoprevention* 327
51 image file: c3np70065h-u46.tif Zerumbone Sesquiterpene Zingiber zerumbet Chemopreventive* 328
52 image file: c3np70065h-u47.tif α-Iso-cubebenol Sesquiterpene Schisandra chinensis Anti-inflammatory$ 329


Cinnamaldehyde 53, isolated from Cinnamomum cassia is a reactive Michael acceptor due to the presence of an α,β-unsaturated aldehyde that spontaneously forms covalent adducts with thiols and activates Nrf2-regulated ARE-mediated gene expression.33053 provides chemopreventive effects by enhancing Nrf2 nuclear translocation and up-regulating phase II enzymes in HepG2 cells331 and human colon cancer cells (HCT116, HT29).332 The target chemopreventive effect of 53 was due to up-regulation of HO-1 and γ-GCSC,332 ERK1/2, Akt, and JNK pathways.331

image file: c3np70065h-u48.tif

Curcumin 54, a yellow pigment found in turmeric has been used for cancer, lung diseases, renal diseases, neurological diseases, liver diseases, metabolic diseases, cardiovascular diseases, and various other inflammatory diseases.333 Dibenzoylmethane 55, a β-ketone analog of curcumin, increases mRNA expression of NQO1, GSTA2, and GCLC in mouse hepatoma cells and inhibits benzo[a]pyrene-induced DNA adducts by enhancing its detoxification in the lungs.244 Caffeic acid and its derivative caffeic acid phenethyl ester 56 are produced in many kinds of plants. 54 and 56 induce HO-1 in endothelial cells,334 astrocytes,335 and renal cells.43,336

image file: c3np70065h-u49.tif

Interestingly, rosolic acid 57, a triphenylmethane from Plantago asiatica with Michael reaction acceptor functionality, can affect HO-1 expression and induces a phase II response.34,278 (Z)-Ligustilide 58, a dihydrophthalide isolated from Angelica sinensis, has α, β, γ, and δ-unsaturated lactone moieties with a cross-conjugated alkene system required for multiple Michael addition. 58 alkylates important cysteine residues in Keap1, leading to the accumulation of Nrf2 in the nucleus where it enhances the transcription of ARE-dependent detoxification genes.33758 promotes Nrf2 nuclear translocation, and remarkably increases Nrf2 and HO-1 protein expression and protects against cerebral ischemia progression remarkably in both in vivo and in vitro.338 The kavalactones Methysticin 59, Yangonin 60, and Kavain 61 isolated from Piper methysticum are effective in protecting neurons against Aβ(1–42) toxicity in vitro by activating Nrf2 and elevating cytoprotective gene expression as exemplified by γ-GCS and HO-1 up-regulation in neural PC-12 and astroglial C6 cells.143 Kavalactones contain the α,β-unsaturated carbonyl group in its lactone ring and may act as a Michael reaction acceptor. Thiophene isolated from Echinops grijisii are Michael addition acceptors.339 2-(Pro-1-ynyl)-5-(5,6-dihydroxypenta-1,3-diynyl)thiophene 62, a novel phase II enzyme inducer, activates the Nrf2 pathway via depleting the cellular level of glutathione. 62 modifies Keap1 by S-glutathionylation, an important post-translational modification of protein cysteines with critical roles in oxidative stress and signal transduction.340

image file: c3np70065h-u50.tif

5.1.2 Oxidizable diphenols and quinones. Oxidizable diphenols and quinone belong to one of the earliest discovered classes of inducers. They were synthesized to understand the mechanism for induction of the cytoprotective enzymes GST and NQO1 long before the Nrf2/ARE pathway was identified.341,342 Three types of diphenols such as catechol (1,2-diphenol), resorcinol (1,3-diphenol), and hydroquinone (1,4-diphenol) behave differently in reversible 1- or 2-electron oxidation reactions. Catechols and hydroquinones are active as NQO1 inducers, whereas resorcinols are inactive. Catechols and hydroquinones can give rise to quinones which, being electrophilic, are the ultimate inducers whereas resorcinols cannot participate in redox reactions and cannot give rise to quinones; it was also established that redox lability is clearly critical for the ability to induce enzymes.264,342 Later it was established that induction of the Nrf2/ARE pathway by oxidizable diphenols involves the redox mechanism. The first step is oxidation of the diphenol to its quinone derivative that contains Michael acceptors, and then, secondly, reaction of the quinone with critical cysteine residues in Keap1 that are essential for its ubiquitin ligase substrate adaptor activity, and thus for repression of Nrf2. Diphenols undergo cytochrome P450-mediated oxidation in vivo to form quinones as the ultimate inducers (Fig. 3).343
image file: c3np70065h-f3.tif
Fig. 3 Diphenol is oxidized to its quinone derivative and then reacts with Keap1 in a Michael addition reaction with the corresponding orthoquinone (or paraquinone) form. Nrf2 is released from Keap1 and translocated into the nucleus to express phase II cytoprotective genes and enzymes. Phosphorylation of Nrf2 also plays a critical role in the transactivation of antioxidant enzymes.

Epigallocatechin gallate (EGCG) 63 is the most abundant and most active catechin polyphenol found in green tea. 63 has a pronounced ability to up-regulate Nrf2 and induce ARE-luciferase reporter gene transactivation.279,34463 activates Nrf2-mediated HO-1 expression and stimulates the expression of many Nrf2-dependent genes in mice.279,344,345 Interestingly, 63 induces the expression of HO-1, γ-glutamyltransferase 1, and GCLC in wild-type mice, but not in Nrf2-deficient mice.346 Moreover, 63 inhibits lipopolysaccharide-induced pulmonary fibrosis by enhancing the activities of antioxidant and phase II enzymes such as GST and NQO1 mediated by Nrf2–Keap1 signalling.347 Two principal mechanisms of action of 63 on Nrf2-mediated cytoprotective responses have been elucidated: first, 63 directly and/or indirectly interacts with cysteine residues present in Keap1, thereby inducing Nrf2 nuclear translocation;348 second, 63 phosphorylates serine/threonine residues of Nrf2 via activation of protein kinases.279,344,345Table 3 shows the list of polyphenols and quinones as Nrf2 activators derived from natural products.

image file: c3np70065h-u51.tif

Table 3 Natural product-derived polyphenols and quinones as inducers of Nrf2/ARE pathwaya
Structure no. Bioactive compound Class Source Therapeutic indication through Nrf2 activation Ref.
a Nrf2 activators increase phase II cytoprotective genes and enzymes either through increased nuclear localization and transcriptional activity of Nrf2 (*), inhibition/delay of ubiquitination and degradation of Nrf2 (#), and/or activation of kinases ($).
64 image file: c3np70065h-u52.tif Cajaninstilbene acid Polyphenol Cajanus cajan Cytoprotective*,$ 349
65 image file: c3np70065h-u53.tif Danshensu Polyphenol Salvia miltiorrhiza Parkinson's disease$ 350
66 image file: c3np70065h-u54.tif Ferulic acid Polyphenol Fruits and vegetables such as tomatoes, sweetcorn and rice Cytoprotective*,$ 351
67 image file: c3np70065h-u55.tif Ethyl ferulate Polyphenol Neuroprotective* 352
68 image file: c3np70065h-u56.tif Lithospermic acid B Polyphenol S. miltiorrhiza Diabetes* 353
69 image file: c3np70065h-u57.tif Resveratrol Polyphenol Peanuts, grapes and red wines Hepatoprotective* 44
70 image file: c3np70065h-u58.tif Piceatannol Polyphenol Euphorbia lagascae Chemopreventive* and neuroprotective* 354,355
71 image file: c3np70065h-u59.tif Protocatechuic acid Polyphenol Green tea Oxidative stress$ 356
72 image file: c3np70065h-u60.tif Gastrodin Polyphenol Gastrodia elata Alzheimer's disease*,$ 141
73 image file: c3np70065h-u61.tif Rottlerin Polyphenol Mallotus philippinensis Chemopreventive$ 357
74 image file: c3np70065h-u62.tif Triphlorethol-A Phlorotannin Ecklonia cava Cytoprotective*,$ 358
75 image file: c3np70065h-u63.tif Eckol Phlorotannin E. cava Cytoprotective$ 359
76 image file: c3np70065h-u64.tif 1,5-Dicaffeoylquinic acid A caffeoylquinic acid derivative Traditional medicinal herbs Cerebral ischemia* 360
77 image file: c3np70065h-u65.tif 3-Caffeoyl, 4-dihydrocaffeoyl quinic acid Chlorogenic acid derivative Salicornia herbacea Hepatoprotective*,$ 361
78 image file: c3np70065h-u66.tif Ginsenoside Rb1 Phytoestrogen Panax ginseng Parkinson's disease*,$ 362
79 image file: c3np70065h-u67.tif Tanshinone I Phenanthrene-quinone S. miltiorrhiza Anti-inflammatory# 363
80 image file: c3np70065h-u68.tif Tanshinone IIA Phenanthrene-quinone S. miltiorrhiza Cytoprotective$ 364
81 image file: c3np70065h-u69.tif Strongylophorine-8 Para-hydroquinone Petrosia corticata Neuroprotection* 365
82 image file: c3np70065h-u70.tif Plumbagin Naphthoquinone Plumbago zeylanica Cerebral ischemia* 366
83 image file: c3np70065h-u71.tif Mollugin Naphthohydroquine Rubia cordifolia Chemotherapeutic*,$ 367
84 image file: c3np70065h-u72.tif Antroquinonol Ubiquinone derivative Antrodia camphorata Nephroprotective* 368,369


5.1.3 Isothiocyanates (ITCs). ITCs are widely consumed in the form of their glucosinolate precursors which are abundant within cruciferous plants. The glucosinolates are hydrolyzed to ITCs, the active inducers, by the coexisting plant enzyme myrosinase or by the microflora of the mammalian gastrointestinal tract.370,371 ITCs from broccoli sprouts are found to be six times more bioavailable than the precursor glucosinolates.371 The natural ITCs sulforaphane (SFN) 85 and phenethyl isothiocyanate 86 are the most studied in this group. 85 induces phase II gene expression in vitro and in vivo372,373 and up-regulates the expression of NQO1, GST and GCL in wild-type mice compared with those in Nrf2-null mice.9785 also increases the expression of phase II gene expression at mRNA and protein levels in a number of cell lines,49,374,375 and increases GST and NQO1 activities in rats.376 Interestingly, a dose-escalation safety study of 85 in healthy subjects showed a dose-dependent increase in NQO1 in skin tissues.377 In a recent clinical study, oral administrations of 85 increased phase II antioxidant enzymes such as GSTM1, GSTP1, NQO1, and HO-1 in the upper airway.37886 activates ARE-mediated phase II drug metabolism gene expressions via the JNK1- and Nrf2-dependent pathways and confers chemoprevention.379
image file: c3np70065h-u73.tif

Interrupting Nrf2–Keap1 and activating MAPK have been proposed as the main mechanisms for the induction of phase II enzymes by ITCs.23,78,380 Another possible 85 mechanism involves the formation of an SFN–Keap1 thionoacyl adduct, which modifies the tertiary structure of Keap1 most readily at the cysteine residues localized at the Kelch domain, thereby stabilizing Nrf2.381 Clinical studies have evaluated the safety, tolerance, and metabolism of broccoli sprouts.382,383

5.1.4 Dithiolethiones and diallyl sulfides. Dithiolethiones are five-membered cyclic sulfur-containing compounds that have emerged as potent cytoprotective agents. The cytoprotective role of dithiolethiones is strengthened by a report showing elevated transcript levels, protein levels and activities of phase II genes in wild-type mice, but not in homozygous Nrf2-mutant mice.384 3H-1,2-Dithiole-3-thione 87 is the simplest and most potent dithiolethione isolated from cruciferous vegetables such as cabbage and brussel sprouts. 87 induces phase II enzymes in hepatic and cardiovascular tissues/cells,384–386 and enhances both nuclear translocation and de novo synthesis of Nrf2 in murine keratinocytes.387 Interestingly, hepatic gene expression profiles examined by oligonucleotide microarray analysis in vehicle or 87-treated wild-type mice as well as in Nrf2 single- and Keap1–Nrf2 double-knockout mice were used to identify those genes regulated by the Keap1–Nrf2 pathway. Transcript levels of 292 genes (detoxification and anti-oxidative enzymes) were elevated in wild-type mice 24 h after treatment with 87 but not in Nrf2-deficient mice.38887 contains the 1,2-dithiol-3-thione moiety, which undergoes thioldisulfide exchange with sulfhydryl groups.389 Interestingly, its regioisomer 1,3-dithiole-2-thione is ineffective even at much higher concentrations, indicating that the 1,2-dithiol-3-thione moiety is essential for inducing phase II enzyme activity.390 The possible mechanism of accumulation of Nrf2 and transactivation of its target genes by dithiolethiones is either via activation of kinases391 or thioldisulfide exchange with sulfhydryl groups.389
image file: c3np70065h-u74.tif

Diallyl sulfides (diallyl sulfide 88, diallyl disulfide 89, and diallyl trisulfide 90) are lipophilic thioesters derived from a class of organosulfur compounds found in Allium vegetables (including garlic and onion). 88, 89, and 90 differentially up-regulate the protein or gene expression of phase II detoxifying enzymes with strength in the order of 90 > 89 > 88;392 however, some reports suggest that 88 causes a striking increase in the greatest number of genes.393 High intake of raw or cooked garlic provided a protective effect against stomach and colorectal cancers in a site-specific case-control study.394 Ajoene 91, a stable garlic byproduct increases PKCδ-dependent Nrf2 activation, GCL induction, and the cellular GSH concentration, which may contribute to protecting cells from oxidative stress.395 Several hypotheses have been proposed396,397 but the exact mechanism underlying the ARE-inducing activity by diallyl sulfides remains poorly understood.392,397,398Table 4 shows the list of polyphenols and quinones as Nrf2 activators derived from natural products.

image file: c3np70065h-u75.tif

Table 4 Natural product-derived organosulfur compounds and polyenes as inducers of Nrf2/ARE pathwaya
Structure no. Bioactive compound Class Source Therapeutic indication through Nrf2 activation Ref.
a Nrf2 activators increase phase II cytoprotective genes and enzymes either through increased nuclear localization and transcriptional activity of Nrf2 (*), inhibition of Keap1 (@), and/or activation of kinases ($).
92 image file: c3np70065h-u76.tif 6-(Methylsulfinyl)hexyl isothiocyanate Isothiocyanate Wasabia japonica Detoxification* 399
93 image file: c3np70065h-u77.tif 6-Methylthiohexyl isothiocyanate Isothiocyanate W. japonica Cytoprotective* 46
94 image file: c3np70065h-u78.tif 1-Cyano-2,3-epithiopropane Epithionitriles Cruciferous vegetables Chemopreventive@ 400
97 image file: c3np70065h-u79.tif Fucoxanthin Carotenoid Undaria pinnatifida Chemopreventive$ 401
98 image file: c3np70065h-u80.tif 3-Hydroxy-β-damascone Carotenoid Apple Chemopreventive* 402


5.1.5 Polyenes. Compounds with an extensive system of conjugated double bonds are referred as polyenes. They readily undergo biotransformation to electrophilic metabolites that can react with free sulfhydryl groups. Carotenoids, a class of polyenes, are colorful plant pigments that induce phase II enzymes.403,404 Lycopene 95, a carotenoid pigment mainly found in tomatoes, is a more potent inducer of AREs than phytotene, astaxanthin and β-carotene.405 Carotenoid derivatives having aldehyde end groups are more active in ARE induction than the corresponding acids. Interestingly, 10,10′-diapocarotene-10,10′-dial 96, a metabolite of lycopene, is a more potent inducer of AREs than lycopene.406 It has been proposed that carotenoids are metabolized to reactive electrophilic metabolites in vivo containing Michael acceptors that covalently modify Keap1, resulting in the activation of Nrf2 and elevated expression of ARE genes.406
image file: c3np70065h-u81.tif
5.1.6 Vicinal dimercaptans. Vicinal dimercaptans (mercaptans with two adjacent thiol groups) are transformed into the electrophilic disulfide bonds in vivo. α-Lipoic acid 99 is a naturally-occurring dietary thiol-antioxidant found almost in all vegetables and fruits, and is also produced endogenously. It has potential therapy for chronic diseases associated with oxidative stress.407 The mechanism is not been established but some reports suggests that 99 activates ERK1/2, p38 MAPK, PI3K and Akt408–410 and induces HO-1 expression in THP-1 monocytic cells via Nrf2 and p38.41199 may increase Nrf2-dependent transcriptional activity by forming lipoyl-cysteinyl mixed disulfides on Keap1.278
image file: c3np70065h-u82.tif
5.1.7 Miscellaneous. Apart from the above-mentioned compounds some other natural product-derived compounds are activators of the Nrf2/ARE pathway, as listed in Table 5.
Table 5 Natural product-derived miscellaneous compounds as inducers of Nrf2/ARE pathwaya
Structure no. Bioactive compound Class Source Therapeutic indication through Nrf2 activation Ref.
a Nrf2 activators increase phase II cytoprotective genes and enzymes either through increased nuclear localization and transcriptional activity of Nrf2 (*), inhibition/delay of ubiquitination and degradation of Nrf2 (#), and/or activation of kinases ($).
100 image file: c3np70065h-u83.tif 4-Ketopinoresinol (α–γ) Double-cyclized type of lignan Coix lachryma-jobi Chemopreventive*,$ 412
101 image file: c3np70065h-u84.tif Ankaflavin Polyketide Monascus species Antidiabetic* 413
102 image file: c3np70065h-u85.tif Gymnasterkoreayne B Polyacetylene compound Gymnaster koraiensis Chemoprevention* 414
103 image file: c3np70065h-u86.tif Falcarindiol Diacetylene Notopterygium incisum Chemopreventive* 415,416
104 image file: c3np70065h-u87.tif Dimerumic acid A degradation product of coprogen B Monascus anka Diabetes* 417
105 image file: c3np70065h-u88.tif Monascin Azaphilonoid Monascus spp. Diabetes* 418
106 image file: c3np70065h-u89.tif Sauchinone Lignan Saururus chinensis Hepatoprotective$ 179
107 image file: c3np70065h-u90.tif Schisandrin B Dibenzocyclooctadiene S. chinensis Cardioprotection*,$ 419
108 image file: c3np70065h-u91.tif Ursodeoxycholic acid Dehydrocostus lactone S. lappa Cytoprotective* 420


5.2 Negative regulation of the Nrf2/ARE pathway

Several mechanisms are involved in negative regulation of the Nrf2/ARE pathway. Overexpression of Cadherins, proteins responsible for cell–cell adhesion at the adherens junction, inhibits nuclear accumulation of Nrf2 and prevents Nrf2-dependent gene induction.421 Estrogen-related receptor β by acting as a repressor of Nrf2 inhibits Nrf2 transcriptional activity and has been useful as a therapeutic target in cancer chemoprevention studies.422 The plasma membrane resident protein caveolin-1 inhibits the expression of antioxidant enzymes by directly interacting with Nrf2 and subsequently suppressing its transcriptional activity in lung epithelial Beas-2B cells.423 Another mode of Nrf2 regulation has been proposed in which glycogen synthase kinase-3 β (GSK-3 β) mediates phosphorylation of Nrf2 and prevents Nrf2 nuclear localization. Co-expression of active GSK-3 β prevents binding and activation of AREs located in phase II gene promoters.424 GSK-3 β promotes cytosolic localization of Nrf2, inhibits transcriptional activity and blocks the antioxidant and cytoprotective functions of Nrf2.84 Activated GSK-3 β phosphorylates Fyn at threonine residues, leading to nuclear localization of Fyn.425 Interestingly, once Fyn is localized inside the nucleus, it phosphorylates tyrosine residue 568 of Nrf2, which leads to a Crm-1-mediated nuclear export and degradation of Nrf2.426 Another transcription factor Bach1 is ubiquitously expressed and competes with Nrf2, leading to negative regulation of the AREs, and the balance of Nrf2 versus Bach1 inside the nucleus influences up- or down-regulation of ARE-mediated gene expression.427 Interestingly, retinoid X receptor alpha (RXRα) RNAi-mediated knockdown increases basal ARE-driven gene expression and induction of ARE-driven genes. Conversely, overexpression of RXRα decreases ARE-driven gene expression. RXRα diminishes Nrf2 cytoprotection by binding directly to the newly defined Neh7 domain in Nrf2.428
5.2.1 Nrf2 inhibitors. As discussed previously, activating Nrf2 has therapeutic potential and activating the Nrf2/ARE pathway is a cell response to defend cells against oxidative stress. However, some concerns have been proposed with increasing Nrf2 signalling. Keap1-knockout mice indicate that constitutively activating Nrf2 can result in serious adverse effects such as hyperkeratosis of the upper digestive tract.429,430 Furthermore, high Nrf2 levels and somatic mutations have been detected in various cancer tissues and Nrf2 plays an important role in the development of chemoresistance.119,166,431,432 Moreover, Nrf2 has also been found to promote atherosclerosis224,433–435 and liver damage in autophagy-deficient mice.74,175 Interestingly, RNAi-mediated decrease of Nrf2 expression in lung cancer cells induces the generation of ROS, suppresses tumor growth, and results in increased sensitivity to chemotherapeutic drug-induced cell death in vitro and in vivo.436 Thus, inhibition of the Nrf2/ARE pathway might provide a beneficial approach against multi-drug resistance. Table 6 summarizes the list of inhibitors for the Nrf2/ARE pathway.
Table 6 Natural product-derived inhibitors of Nrf2/ARE pathway
Structure no. Bioactive compound Class Source Therapeutic indication through Nrf2 inhibition
109 image file: c3np70065h-u92.tif Apigenin Flavonoid Fruits and vegetables 109 dramatically reduced Nrf2 expression at both the mRNA and protein levels through down-regulation of the PI3K/Akt pathway, leading to a reduction of Nrf2-downstream genes. 109 significantly sensitizes doxorubicin-resistant cells to doxorubicin and increases its intracellular concentration.437
110 image file: c3np70065h-u93.tif Ascorbic acid Vitamin C Citrus fruits 110 resulted in a decrease in Nrf2–DNA binding and decreases in levels of γ-GCSl mRNA and GSH in imatinib-resistant KCL22/SR cells and partly restored imatinib sensitivity to KCL22/SR cells.438
111 image file: c3np70065h-u94.tif All-trans retinoic acid Vitamin A From dietary β-carotene 111 markedly reduced the ability of Nrf2 to mediate induction of ARE-driven genes by cancer chemopreventive agent tBHQ. 111 did not block the nuclear accumulation of Nrf2 but reduced the binding of Nrf2 to the ARE enhancer as a consequence of forming a complex with retinoic acid.439
112 image file: c3np70065h-u95.tif Brusatol Quassinoid Brucea javanica 112 selectively reduced the protein level of Nrf2 through enhanced ubiquitination and degradation of Nrf2.160
63 image file: c3np70065h-u96.tif EGCG Polyphenol Green tea 63 at high concentration induced apoptosis by suppressing expression of HO-1 protein and mRNA, and this effect correlated with a decrease in both Nrf2–ARE binding and HO-1–ARE–luciferase activity.258
113 image file: c3np70065h-u97.tif Luteolin Flavonoid Celery, green pepper, parsley, perilla leaf, and chamomile tea 113 elicited a dramatic reduction in Nrf2 at both the mRNA and the protein levels, leading to decreased Nrf2 binding to AREs, down-regulation of ARE-driven genes, and depletion of reduced glutathione in A549 cells and finally leading to sensitization to therapeutic drugs.161
114 image file: c3np70065h-u98.tif Ochratoxin A Mycotoxin Aspergillus and Penicillium subspecies 114 significantly lowered nuclear translocation and transactivation of Nrf2 and also lowered Nrf2 mRNA levels.440
115 image file: c3np70065h-u99.tif Trigonelline Alkaloid Fenugreek seeds 115 efficiently decreased basal and tBHQ-induced Nrf2 activity in pancreatic carcinoma cell lines and H6c7 pancreatic duct cells. 115 also blocks Nrf2-dependent expression of proteasomal genes and reduces proteasome activity in all cell lines tested.441


6 Concluding remarks

Oxidative stress is the central component of almost all chronic diseases. The Nrf2/ARE pathway was primarily thought to be a regulator of antioxidant enzymes but recent studies have proved its role in the regulation of many genes for stress-generated diseases. Both oxidative stress and Nrf2 inducers are able to transcriptionally activate Nrf2 target genes to trigger a cytoprotective response. Indeed, several studies have shown the importance of Nrf2 in therapeutic approaches using Nrf2 overexpression or Nrf2 knockdown. It is now clear that inducing the Nrf2-dependent response represents the cell's attempt to defend itself from stressful conditions. Therefore, the Nrf2/ARE pathway is currently considered a cell-survival pathway and is becoming of clinical therapeutic interest for treating multiple sclerosis and diabetic nephropathy. However, sustained activation of the Nrf2/ARE pathway favours some deleterious effects such as multi-drug resistance, and atherosclerosis. Moreover, free radical production increases with ageing which is root cause of neurodegenerative diseases, diabetes, cancer and cardiovascular diseases. Contrary Nrf2 production appears to decline with ageing. It is still unclear which target gene in the Nrf2 pathway contributes to these detrimental effects; hence, it is mandatory to evaluate the role of activating Nrf2 in in-vitro and in-vivo experimental models with the use of available Nrf2 inducers, Nrf2 overexpression, or Keap1 down-regulation. Epidemiological studies have shown that natural products provide beneficial effects by regulating Nrf2 levels. Inducers and inhibitors provide a more valuable and direct pharmacological approach to extrapolate the desired outcomes in a clinical setting.

7 Acknowledgements

This work is supported by the High Value-Added Food Technology Development Program and by the Ministry for Food, Agriculture, Forestry, and Fisheries, Republic of Korea (111127-3).

8 References

  1. M. Valko, C. J. Rhodes, J. Moncol, M. Izakovic and M. Mazur, Chem.-Biol. Interact., 2006, 160, 1–40 CrossRef CAS PubMed.
  2. B. Halliwell, Biochem. J., 2007, 401, 1–11 CrossRef CAS PubMed.
  3. S. Reuter, S. C. Gupta, M. M. Chaturvedi and B. B. Aggarwal, Free Radical Biol. Med., 2010, 49, 1603–1616 CrossRef CAS PubMed.
  4. H. Li, S. Horke and U. Forstermann, Trends Pharmacol. Sci., 2013, 34, 313–319 CrossRef CAS PubMed.
  5. J. E. Castelao and M. Gago-Dominguez, Med. Hypotheses, 2008, 71, 39–44 CrossRef CAS PubMed.
  6. N. Anatoliotakis, S. Deftereos, G. Bouras, G. Giannopoulos, D. Tsounis, C. Angelidis, A. Kaoukis and C. Stefanadis, Curr. Top. Med. Chem., 2013, 13, 115–138 CrossRef CAS.
  7. G. L. Caldeira, I. L. Ferreira and A. C. Rego, J. Alzheimer's Dis., 2013, 34, 115–131 CAS.
  8. R. Sultana and D. A. Butterfield, J. Alzheimer's Dis., 2013, 33(Suppl. 1), S243–251 Search PubMed.
  9. M. C. Badía, E. Giraldo, F. Dasí, D. Alonso, J. M. Lainez, A. Lloret and J. Viña, Free Radical Biol. Med., 2013, 63, 274–279 CrossRef PubMed.
  10. H. Kumar, H. W. Lim, S. V. More, B. W. Kim, S. Koppula, I. S. Kim and D. K. Choi, Int. J. Mol. Sci., 2012, 13, 10478–10504 CrossRef CAS PubMed.
  11. S. Koppula, H. Kumar, I. S. Kim and D. K. Choi, Mediators Inflammation, 2012, 2012, 823902 CrossRef PubMed.
  12. J. M. Taylor, B. S. Main and P. J. Crack, Neurochem. Int., 2013, 62, 803–819 CrossRef CAS PubMed.
  13. L. Yang, N. Y. Calingasan, B. Thomas, R. K. Chaturvedi, M. Kiaei, E. J. Wille, K. T. Liby, C. Williams, D. Royce, R. Risingsong, E. S. Musiek, J. D. Morrow, M. Sporn and M. F. Beal, PLoS One, 2009, 4, e5757 Search PubMed.
  14. C. Stack, D. Ho, E. Wille, N. Y. Calingasan, C. Williams, K. Liby, M. Sporn, M. Dumont and M. F. Beal, Free Radical Biol. Med., 2010, 49, 147–158 CrossRef CAS PubMed.
  15. A. Neymotin, N. Y. Calingasan, E. Wille, N. Naseri, S. Petri, M. Damiano, K. T. Liby, R. Risingsong, M. Sporn, M. F. Beal and M. Kiaei, Free Radical Biol. Med., 2011, 51, 88–96 CrossRef CAS PubMed.
  16. S. Petri, S. Korner and M. Kiaei, Neurol. Res. Int., 2012, 2012, 878030 Search PubMed.
  17. H. Nohl, A. V. Kozlov, L. Gille and K. Staniek, Biochem. Soc. Trans., 2003, 31, 1308–1311 CrossRef CAS.
  18. S. Dimmeler and A. M. Zeiher, Circ. Res., 2000, 87, 434–439 CrossRef CAS.
  19. S. Ruiz, P. E. Pergola, R. A. Zager and N. D. Vaziri, Kidney Int., 2013, 83, 1029–1041 CrossRef CAS PubMed.
  20. S. R. Khan, Minerva Med., 2013, 104, 23–30 CAS.
  21. J. S. Teodoro, A. P. Gomes, A. T. Varela, F. V. Duarte, A. P. Rolo and C. M. Palmeira, Mol. Cell. Biochem., 2013, 376, 103–110 CrossRef CAS PubMed.
  22. H. Kumar, S. Koppula, I. S. Kim, S. V. More, B. W. Kim and D. K. Choi, CNS Neurol. Disord.: Drug Targets, 2012, 11, 1015–1029 CAS.
  23. G. K. McWalter, L. G. Higgins, L. I. McLellan, C. J. Henderson, L. Song, P. J. Thornalley, K. Itoh, M. Yamamoto and J. D. Hayes, J. Nutr., 2004, 134, 3499S–3506S CAS.
  24. J. Alam, D. Stewart, C. Touchard, S. Boinapally, A. M. Choi and J. L. Cook, J. Biol. Chem., 1999, 274, 26071–26078 CrossRef CAS PubMed.
  25. S. A. Chanas, Q. Jiang, M. McMahon, G. K. McWalter, L. I. McLellan, C. R. Elcombe, C. J. Henderson, C. R. Wolf, G. J. Moffat, K. Itoh, M. Yamamoto and J. D. Hayes, Biochem. J., 2002, 365, 405–416 CrossRef CAS PubMed.
  26. T. Nguyen, P. J. Sherratt, H. C. Huang, C. S. Yang and C. B. Pickett, J. Biol. Chem., 2003, 278, 4536–4541 CrossRef CAS PubMed.
  27. T. Nguyen, T. H. Rushmore and C. B. Pickett, J. Biol. Chem., 1994, 269, 13656–13662 CAS.
  28. T. H. Rushmore, R. G. King, K. E. Paulson and C. B. Pickett, Proc. Natl. Acad. Sci. U. S. A., 1990, 87, 3826–3830 CrossRef CAS.
  29. K. Itoh, K. I. Tong and M. Yamamoto, Free Radical Biol. Med., 2004, 36, 1208–1213 CrossRef CAS PubMed.
  30. H. Motohashi and M. Yamamoto, Trends Mol. Med., 2004, 10, 549–557 CrossRef CAS PubMed.
  31. K. Itoh, N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J. D. Engel and M. Yamamoto, Genes Dev., 1999, 13, 76–86 CrossRef CAS.
  32. M. S. Butler, Nat. Prod. Rep., 2005, 22, 162–195 RSC.
  33. F. E. Koehn and G. T. Carter, Nat. Rev. Drug Discovery, 2005, 4, 206–220 CrossRef CAS PubMed.
  34. P. Talalay and J. W. Fahey, J. Nutr., 2001, 131, 3027S–3033S CAS.
  35. K. A. Steinmetz and J. D. Potter, J. Am. Diet. Assoc., 1996, 96, 1027–1039 CrossRef CAS.
  36. S. S. Hecht, Drug Metab. Rev., 2000, 32, 395–411 CrossRef CAS PubMed.
  37. F. Gomez-Pinilla, Nat. Rev. Neurosci., 2008, 9, 568–578 CrossRef CAS PubMed.
  38. H. Kumar, S. V. More, S. D. Han, J. Y. Choi and D. K. Choi, Molecules, 2012, 17, 10503–10539 CrossRef CAS PubMed.
  39. A. B. Granado-Serrano, M. A. Martin, L. Bravo, L. Goya and S. Ramos, Chem.-Biol. Interact., 2012, 195, 154–164 CrossRef CAS PubMed.
  40. W. Lin, R. T. Wu, T. Wu, T. O. Khor, H. Wang and A. N. Kong, Biochem. Pharmacol., 2008, 76, 967–973 CrossRef CAS PubMed.
  41. E. O. Farombi, S. Shrotriya, H. K. Na, S. H. Kim and Y. J. Surh, Food Chem. Toxicol., 2008, 46, 1279–1287 CrossRef CAS PubMed.
  42. B. Jagatha, R. B. Mythri, S. Vali and M. M. Bharath, Free Radical Biol. Med., 2008, 44, 907–917 CrossRef CAS PubMed.
  43. E. Balogun, M. Hoque, P. Gong, E. Killeen, C. J. Green, R. Foresti, J. Alam and R. Motterlini, Biochem. J., 2003, 371, 887–895 CrossRef CAS PubMed.
  44. J. A. Rubiolo, G. Mithieux and F. V. Vega, Eur. J. Pharmacol., 2008, 591, 66–72 CrossRef CAS PubMed.
  45. C. Y. Ho, Y. T. Cheng, C. F. Chau and G. C. Yen, J. Agric. Food Chem., 2012, 60, 100–107 CrossRef CAS PubMed.
  46. Y. Korenori, S. Tanigawa, T. Kumamoto, S. Qin, Y. Daikoku, K. Miyamori, M. Nagai and D. X. Hou, Mol. Nutr. Food Res., 2013, 57, 854–864 CAS.
  47. L. Wu, M. H. Noyan Ashraf, M. Facci, R. Wang, P. G. Paterson, A. Ferrie and B. H. Juurlink, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 7094–7099 CrossRef CAS PubMed.
  48. M. Alia, S. Ramos, R. Mateos, A. B. Granado-Serrano, L. Bravo and L. Goya, Toxicol. Appl. Pharmacol., 2006, 212, 110–118 CrossRef CAS PubMed.
  49. J. D. Brooks, V. G. Paton and G. Vidanes, Cancer Epidemiol., Biomarkers Prev., 2001, 10, 949–954 CAS.
  50. M. Dumont, E. Wille, N. Y. Calingasan, D. Tampellini, C. Williams, G. K. Gouras, K. Liby, M. Sporn, C. Nathan, M. Flint Beal and M. T. Lin, J. Neurochem., 2009, 109, 502–512 CrossRef CAS PubMed.
  51. N. A. Kaidery, R. Banerjee, L. Yang, N. A. Smirnova, D. M. Hushpulian, K. T. Liby, C. R. Williams, M. Yamamoto, T. W. Kensler, R. R. Ratan, M. B. Sporn, M. F. Beal, I. G. Gazaryan and B. Thomas, Antioxid. Redox Signaling, 2013, 18, 139–157 CrossRef CAS PubMed.
  52. K. T. Liby and M. B. Sporn, Pharmacol. Rev., 2012, 64, 972–1003 CrossRef CAS PubMed.
  53. T. Suzuki, H. Motohashi and M. Yamamoto, Trends Pharmacol. Sci., 2013, 34, 340–346 CrossRef CAS PubMed.
  54. R. A. Linker, D. H. Lee, S. Ryan, A. M. van Dam, R. Conrad, P. Bista, W. Zeng, X. Hronowsky, A. Buko, S. Chollate, G. Ellrichmann, W. Bruck, K. Dawson, S. Goelz, S. Wiese, R. H. Scannevin, M. Lukashev and R. Gold, Brain, 2011, 134, 678–692 CrossRef PubMed.
  55. T. Nguyen, P. J. Sherratt, P. Nioi, C. S. Yang and C. B. Pickett, J. Biol. Chem., 2005, 280, 32485–32492 CrossRef CAS PubMed.
  56. P. Moi, K. Chan, I. Asunis, A. Cao and Y. W. Kan, Proc. Natl. Acad. Sci. U. S. A., 1994, 91, 9926–9930 CrossRef CAS.
  57. L. Baird and A. T. Dinkova-Kostova, Arch. Toxicol., 2011, 85, 241–272 CrossRef CAS PubMed.
  58. M. McMahon, K. Itoh, M. Yamamoto and J. D. Hayes, J. Biol. Chem., 2003, 278, 21592–21600 CrossRef CAS PubMed.
  59. K. Itoh, N. Wakabayashi, Y. Katoh, T. Ishii, T. O'Connor and M. Yamamoto, Genes Cells, 2003, 8, 379–391 CrossRef CAS.
  60. D. D. Zhang and M. Hannink, Mol. Cell. Biol., 2003, 23, 8137–8151 CrossRef CAS.
  61. T. W. Kensler, N. Wakabayashi and S. Biswal, Annu. Rev. Pharmacol. Toxicol., 2007, 47, 89–116 CrossRef CAS PubMed.
  62. H. Okawa, H. Motohashi, A. Kobayashi, H. Aburatani, T. W. Kensler and M. Yamamoto, Biochem. Biophys. Res. Commun., 2006, 339, 79–88 CrossRef CAS PubMed.
  63. S. Dhakshinamoorthy and A. K. Jaiswal, Oncogene, 2001, 20, 3906–3917 CrossRef CAS PubMed.
  64. W. O. Osburn, N. Wakabayashi, V. Misra, T. Nilles, S. Biswal, M. A. Trush and T. W. Kensler, Arch. Biochem. Biophys., 2006, 454, 7–15 CrossRef CAS PubMed.
  65. L. A. Wilson, A. Gemin, R. Espiritu and G. Singh, FASEB J., 2005, 19, 2085–2087 CAS.
  66. S. Dhakshinamoorthy and A. G. Porter, J. Biol. Chem., 2004, 279, 20096–20107 CrossRef CAS PubMed.
  67. E. Y. Park and S. G. Kim, Methods Enzymol., 2005, 396, 341–349 CrossRef CAS PubMed.
  68. A. L. Eggler, G. Liu, J. M. Pezzuto, R. B. van Breemen and A. D. Mesecar, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 10070–10075 CrossRef CAS PubMed.
  69. M. Velichkova and T. Hasson, Mol. Cell. Biol., 2005, 25, 4501–4513 CrossRef CAS PubMed.
  70. K. I. Tong, A. Kobayashi, F. Katsuoka and M. Yamamoto, Biol. Chem., 2006, 387, 1311–1320 CrossRef CAS PubMed.
  71. Y. Katoh, K. Iida, M. I. Kang, A. Kobayashi, M. Mizukami, K. I. Tong, M. McMahon, J. D. Hayes, K. Itoh and M. Yamamoto, Arch. Biochem. Biophys., 2005, 433, 342–350 CrossRef CAS PubMed.
  72. M. Kobayashi, K. Itoh, T. Suzuki, H. Osanai, K. Nishikawa, Y. Katoh, Y. Takagi and M. Yamamoto, Genes Cells, 2002, 7, 807–820 CrossRef CAS.
  73. K. I. Tong, B. Padmanabhan, A. Kobayashi, C. Shang, Y. Hirotsu, S. Yokoyama and M. Yamamoto, Mol. Cell. Biol., 2007, 27, 7511–7521 CrossRef CAS PubMed.
  74. M. Komatsu, H. Kurokawa, S. Waguri, K. Taguchi, A. Kobayashi, Y. Ichimura, Y. S. Sou, I. Ueno, A. Sakamoto, K. I. Tong, M. Kim, Y. Nishito, S. Iemura, T. Natsume, T. Ueno, E. Kominami, H. Motohashi, K. Tanaka and M. Yamamoto, Nat. Cell Biol., 2010, 12, 213–223 CAS.
  75. W. Chen, Z. Sun, X. J. Wang, T. Jiang, Z. Huang, D. Fang and D. D. Zhang, Mol. Cell, 2009, 34, 663–673 CrossRef CAS PubMed.
  76. H. J. Kang, Y. B. Hong, H. J. Kim and I. Bae, J. Biol. Chem., 2010, 285, 21258–21268 CrossRef CAS PubMed.
  77. H. C. Huang, T. Nguyen and C. B. Pickett, J. Biol. Chem., 2002, 277, 42769–42774 CrossRef CAS PubMed.
  78. R. Yu, W. Lei, S. Mandlekar, M. J. Weber, C. J. Der, J. Wu and A. N. Kong, J. Biol. Chem., 1999, 274, 27545–27552 CrossRef CAS PubMed.
  79. M. Kobayashi and M. Yamamoto, Adv. Enzyme Regul., 2006, 46, 113–140 CrossRef CAS PubMed.
  80. H. C. Huang, T. Nguyen and C. B. Pickett, Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 12475–12480 CrossRef CAS PubMed.
  81. S. Numazawa, M. Ishikawa, A. Yoshida, S. Tanaka and T. Yoshida, Am. J. Physiol.: Cell Physiol., 2003, 285, C334–342 CrossRef CAS PubMed.
  82. J. Pi, Y. Bai, J. M. Reece, J. Williams, D. Liu, M. L. Freeman, W. E. Fahl, D. Shugar, J. Liu, W. Qu, S. Collins and M. P. Waalkes, Free Radical Biol. Med., 2007, 42, 1797–1806 CrossRef CAS PubMed.
  83. A. K. Jain, S. Mahajan and A. K. Jaiswal, J. Biol. Chem., 2008, 283, 17712–17720 CrossRef CAS PubMed.
  84. A. I. Rojo, M. R. Sagarra and A. Cuadrado, J. Neurochem., 2008, 105, 192–202 CrossRef CAS PubMed.
  85. K. I. Tong, Y. Katoh, H. Kusunoki, K. Itoh, T. Tanaka and M. Yamamoto, Mol. Cell. Biol., 2006, 26, 2887–2900 CrossRef CAS PubMed.
  86. R. Yu, S. Mandlekar, W. Lei, W. E. Fahl, T. H. Tan and A. N. Kong, J. Biol. Chem., 2000, 275, 2322–2327 CrossRef CAS PubMed.
  87. D. Malhotra, E. Portales-Casamar, A. Singh, S. Srivastava, D. Arenillas, C. Happel, C. Shyr, N. Wakabayashi, T. W. Kensler, W. W. Wasserman and S. Biswal, Nucleic Acids Res., 2010, 38, 5718–5734 CrossRef CAS PubMed.
  88. A. Kobayashi, M. I. Kang, H. Okawa, M. Ohtsuji, Y. Zenke, T. Chiba, K. Igarashi and M. Yamamoto, Mol. Cell. Biol., 2004, 24, 7130–7139 CrossRef CAS PubMed.
  89. A. K. Jaiswal, Free Radical Biol. Med., 2004, 36, 1199–1207 CrossRef CAS PubMed.
  90. A. Meister and M. E. Anderson, Annu. Rev. Biochem., 1983, 52, 711–760 CrossRef CAS PubMed.
  91. A. Giudice and M. Montella, BioEssays, 2006, 28, 169–181 CrossRef CAS PubMed.
  92. Y. Zhang and G. B. Gordon, Mol. Cancer Ther., 2004, 3, 885–893 CAS.
  93. P. Talalay, A. T. Dinkova-Kostova and W. D. Holtzclaw, Adv. Enzyme Regul., 2003, 43, 121–134 CrossRef CAS.
  94. P. Talalay, J. W. Fahey, W. D. Holtzclaw, T. Prestera and Y. Zhang, Toxicol. Lett., 1995, 82–83, 173–179 CrossRef CAS.
  95. T. W. Kensler, Environ. Health Perspect., 1997, 105(Suppl. 4), 965–970 CAS.
  96. J. M. Lee, M. J. Calkins, K. Chan, Y. W. Kan and J. A. Johnson, J. Biol. Chem., 2003, 278, 12029–12038 CrossRef CAS PubMed.
  97. R. K. Thimmulappa, K. H. Mai, S. Srisuma, T. W. Kensler, M. Yamamoto and S. Biswal, Cancer Res., 2002, 62, 5196–5203 CAS.
  98. T. Rangasamy, C. Y. Cho, R. K. Thimmulappa, L. Zhen, S. S. Srisuma, T. W. Kensler, M. Yamamoto, I. Petrache, R. M. Tuder and S. Biswal, J. Clin. Invest., 2004, 114, 1248–1259 CAS.
  99. J. M. Lee, J. Li, D. A. Johnson, T. D. Stein, A. D. Kraft, M. J. Calkins, R. J. Jakel and J. A. Johnson, FASEB J., 2005, 19, 1061–1066 CrossRef CAS PubMed.
  100. K. Chan, R. Lu, J. C. Chang and Y. W. Kan, Proc. Natl. Acad. Sci. U. S. A., 1996, 93, 13943–13948 CrossRef CAS.
  101. J. Y. Chan and M. Kwong, Biochim. Biophys. Acta, 2000, 1517, 19–26 CrossRef CAS.
  102. M. Ramos-Gomez, M. K. Kwak, P. M. Dolan, K. Itoh, M. Yamamoto, P. Talalay and T. W. Kensler, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 3410–3415 CrossRef CAS PubMed.
  103. Y. Ishii, K. Itoh, Y. Morishima, T. Kimura, T. Kiwamoto, T. Iizuka, A. E. Hegab, T. Hosoya, A. Nomura, T. Sakamoto, M. Yamamoto and K. Sekizawa, J. Immunol., 2005, 175, 6968–6975 CAS.
  104. H. Y. Cho, A. E. Jedlicka, S. P. Reddy, L. Y. Zhang, T. W. Kensler and S. R. Kleeberger, Am. J. Respir. Cell Mol. Biol., 2002, 26, 42–51 CrossRef CAS PubMed.
  105. M. McMahon, K. Itoh, M. Yamamoto, S. A. Chanas, C. J. Henderson, L. I. McLellan, C. R. Wolf, C. Cavin and J. D. Hayes, Cancer Res., 2001, 61, 3299–3307 CAS.
  106. T. O. Khor, M. T. Huang, K. H. Kwon, J. Y. Chan, B. S. Reddy and A. N. Kong, Cancer Res., 2006, 66, 11580–11584 CrossRef CAS PubMed.
  107. A. D. Kraft, J. M. Lee, D. A. Johnson, Y. W. Kan and J. A. Johnson, J. Neurochem., 2006, 98, 1852–1865 CrossRef CAS PubMed.
  108. A. Y. Shih, S. Imbeault, V. Barakauskas, H. Erb, L. Jiang, P. Li and T. H. Murphy, J. Biol. Chem., 2005, 280, 22925–22936 CrossRef CAS PubMed.
  109. C. Xu, M. T. Huang, G. Shen, X. Yuan, W. Lin, T. O. Khor, A. H. Conney and A. N. Kong, Cancer Res., 2006, 66, 8293–8296 CrossRef CAS PubMed.
  110. K. Iida, K. Itoh, Y. Kumagai, R. Oyasu, K. Hattori, K. Kawai, T. Shimazui, H. Akaza and M. Yamamoto, Cancer Res., 2004, 64, 6424–6431 CrossRef CAS PubMed.
  111. K. Iida, K. Itoh, J. M. Maher, Y. Kumagai, R. Oyasu, Y. Mori, T. Shimazui, H. Akaza and M. Yamamoto, Carcinogenesis, 2007, 28, 2398–2403 CrossRef CAS PubMed.
  112. A. Enomoto, K. Itoh, E. Nagayoshi, J. Haruta, T. Kimura, T. O'Connor, T. Harada and M. Yamamoto, Toxicol. Sci., 2001, 59, 169–177 CrossRef CAS PubMed.
  113. K. Chan, X. D. Han and Y. W. Kan, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 4611–4616 CrossRef CAS PubMed.
  114. T. Rangasamy, J. Guo, W. A. Mitzner, J. Roman, A. Singh, A. D. Fryer, M. Yamamoto, T. W. Kensler, R. M. Tuder, S. N. Georas and S. Biswal, J. Exp. Med., 2005, 202, 47–59 CrossRef CAS PubMed.
  115. Y. Aoki, H. Sato, N. Nishimura, S. Takahashi, K. Itoh and M. Yamamoto, Toxicol. Appl. Pharmacol., 2001, 173, 154–160 CrossRef CAS PubMed.
  116. T. Iizuka, Y. Ishii, K. Itoh, T. Kiwamoto, T. Kimura, Y. Matsuno, Y. Morishima, A. E. Hegab, S. Homma, A. Nomura, T. Sakamoto, M. Shimura, A. Yoshida, M. Yamamoto and K. Sekizawa, Genes Cells, 2005, 10, 1113–1125 CrossRef CAS PubMed.
  117. T. Umemura, Y. Kuroiwa, Y. Kitamura, Y. Ishii, K. Kanki, Y. Kodama, K. Itoh, M. Yamamoto, A. Nishikawa and M. Hirose, Toxicol. Sci., 2006, 90, 111–119 CrossRef CAS PubMed.
  118. X. Hu, J. R. Roberts, P. L. Apopa, Y. W. Kan and Q. Ma, Mol. Cell. Biol., 2006, 26, 940–954 CrossRef CAS PubMed.
  119. T. W. Kensler and N. Wakabayashi, Carcinogenesis, 2010, 31, 90–99 CrossRef CAS PubMed.
  120. J. H. Suh, S. V. Shenvi, B. M. Dixon, H. Liu, A. K. Jaiswal, R. M. Liu and T. M. Hagen, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 3381–3386 CrossRef CAS PubMed.
  121. M. Suzuki, T. Betsuyaku, Y. Ito, K. Nagai, Y. Nasuhara, K. Kaga, S. Kondo and M. Nishimura, Am. J. Respir. Cell Mol. Biol., 2008, 39, 673–682 CrossRef CAS PubMed.
  122. A. J. Przybysz, K. P. Choe, L. J. Roberts and K. Strange, Mech. Ageing Dev., 2009, 130, 357–369 CrossRef CAS PubMed.
  123. M. M. Rahman, G. P. Sykiotis, M. Nishimura, R. Bodmer and D. Bohmann, Aging Cell, 2013, 12, 554–562 CrossRef CAS PubMed.
  124. M. Zhang, C. An, Y. Gao, R. K. Leak, J. Chen and F. Zhang, Prog. Neurobiol., 2013, 100, 30–47 CrossRef CAS PubMed.
  125. C. P. Ramsey, C. A. Glass, M. B. Montgomery, K. A. Lindl, G. P. Ritson, L. A. Chia, R. L. Hamilton, C. T. Chu and K. L. Jordan-Sciutto, J. Neuropathol. Exp. Neurol., 2007, 66, 75–85 CrossRef CAS PubMed.
  126. K. Kanninen, T. M. Malm, H. K. Jyrkkanen, G. Goldsteins, V. Keksa-Goldsteine, H. Tanila, M. Yamamoto, S. Yla-Herttuala, A. L. Levonen and J. Koistinaho, Mol. Cell. Neurosci., 2008, 39, 302–313 CrossRef CAS PubMed.
  127. F. Nouhi, S. K. Tusi, A. Abdi and F. Khodagholi, Neurochem. Res., 2011, 36, 870–878 CrossRef CAS PubMed.
  128. N. C. Burton, T. W. Kensler and T. R. Guilarte, NeuroToxicology, 2006, 27, 1094–1100 CrossRef CAS PubMed.
  129. P. C. Chen, M. R. Vargas, A. K. Pani, R. J. Smeyne, D. A. Johnson, Y. W. Kan and J. A. Johnson, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 2933–2938 CrossRef CAS PubMed.
  130. M. C. Barone, G. P. Sykiotis and D. Bohmann, Dis. Models & Mech., 2011, 4, 701–707 CAS.
  131. Z. Zhang, W. Cui, G. Li, S. Yuan, D. Xu, M. P. Hoi, Z. Lin, J. Dou, Y. Han and S. M. Lee, J. Agric. Food Chem., 2012, 60, 8171–8182 CrossRef CAS PubMed.
  132. R. K. Chaturvedi, N. Y. Calingasan, L. Yang, T. Hennessey, A. Johri and M. F. Beal, Hum. Mol. Genet., 2010, 19, 3190–3205 CrossRef CAS PubMed.
  133. A. Santamaria, F. Perez-Severiano, E. Rodriguez-Martinez, P. D. Maldonado, J. Pedraza-Chaverri, C. Rios and J. Segovia, Neurochem. Res., 2001, 26, 419–424 CrossRef CAS.
  134. W. M. van Roon-Mom, B. A. Pepers, P. A. t. Hoen, C. A. Verwijmeren, J. T. den Dunnen, J. C. Dorsman and G. B. van Ommen, BMC Mol. Biol., 2008, 9, 84 CrossRef PubMed.
  135. M. J. Calkins, R. J. Jakel, D. A. Johnson, K. Chan, Y. W. Kan and J. A. Johnson, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 244–249 CrossRef CAS PubMed.
  136. G. Ellrichmann, E. Petrasch-Parwez, D. H. Lee, C. Reick, L. Arning, C. Saft, R. Gold and R. A. Linker, PLoS One, 2011, 6, e16172 CAS.
  137. A. Sarlette, K. Krampfl, C. Grothe, N. Neuhoff, R. Dengler and S. Petri, J. Neuropathol. Exp. Neurol., 2008, 67, 1055–1062 CrossRef CAS PubMed.
  138. M. Pehar, M. R. Vargas, K. M. Robinson, P. Cassina, P. J. Diaz-Amarilla, T. M. Hagen, R. Radi, L. Barbeito and J. S. Beckman, J. Neurosci., 2007, 27, 7777–7785 CrossRef CAS PubMed.
  139. J. Kirby, E. Halligan, M. J. Baptista, S. Allen, P. R. Heath, H. Holden, S. C. Barber, C. A. Loynes, C. A. Wood-Allum, J. Lunec and P. J. Shaw, Brain, 2005, 128, 1686–1706 CrossRef PubMed.
  140. M. R. Vargas, M. Pehar, P. Cassina, J. S. Beckman and L. Barbeito, J. Neurochem., 2006, 97, 687–696 CrossRef CAS PubMed.
  141. X. Zhao, Y. Zou, H. Xu, L. Fan, H. Guo, X. Li, G. Li, X. Zhang and M. Dong, Brain Res., 2012, 1482, 13–21 CrossRef CAS PubMed.
  142. S. S. Kim, J. Lim, Y. Bang, J. Gal, S.-U. Lee, Y.-C. Cho, G. Yoon, B. Y. Kang, S. H. Cheon and H. J. Choi, J. Nutr. Biochem., 2012, 23, 1314–1323 CrossRef CAS PubMed.
  143. C. J. Wruck, M. E. Gotz, T. Herdegen, D. Varoga, L. O. Brandenburg and T. Pufe, Mol. Pharmacol., 2008, 73, 1785–1795 CrossRef CAS PubMed.
  144. T. Ohta, K. Iijima, M. Miyamoto, I. Nakahara, H. Tanaka, M. Ohtsuji, T. Suzuki, A. Kobayashi, J. Yokota, T. Sakiyama, T. Shibata, M. Yamamoto and S. Hirohashi, Cancer Res., 2008, 68, 1303–1309 CrossRef CAS PubMed.
  145. T. Shibata, T. Ohta, K. I. Tong, A. Kokubu, R. Odogawa, K. Tsuta, H. Asamura, M. Yamamoto and S. Hirohashi, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 13568–13573 CrossRef CAS PubMed.
  146. A. Singh, V. Misra, R. K. Thimmulappa, H. Lee, S. Ames, M. O. Hoque, J. G. Herman, S. B. Baylin, D. Sidransky, E. Gabrielson, M. V. Brock and S. Biswal, PLoS Med., 2006, 3, e420 Search PubMed.
  147. T. Shibata, A. Kokubu, M. Gotoh, H. Ojima, T. Ohta, M. Yamamoto and S. Hirohashi, Gastroenterology, 2008, 135, 1358–1368 CrossRef CAS PubMed , 1368 e1351–1354.
  148. D. R. Stacy, K. Ely, P. P. Massion, W. G. Yarbrough, D. E. Hallahan, K. R. Sekhar and M. L. Freeman, Head Neck, 2006, 28, 813–818 CrossRef PubMed.
  149. J. W. Kaspar, S. K. Niture and A. K. Jaiswal, Free Radical Biol. Med., 2009, 47, 1304–1309 CrossRef CAS PubMed.
  150. K. Yang, S. A. Lamprecht, Y. Liu, H. Shinozaki, K. Fan, D. Leung, H. Newmark, V. E. Steele, G. J. Kelloff and M. Lipkin, Carcinogenesis, 2000, 21, 1655–1660 CrossRef CAS PubMed.
  151. C. A. Lamartiniere, M. S. Cotroneo, W. A. Fritz, J. Wang, R. Mentor-Marcel and A. Elgavish, J. Nutr., 2002, 132, 552S–558S Search PubMed.
  152. H. K. Na and Y. J. Surh, Food Chem. Toxicol., 2008, 46, 1271–1278 CrossRef CAS PubMed.
  153. R. Patel and G. Maru, Free Radical Biol. Med., 2008, 44, 1897–1911 CrossRef CAS PubMed.
  154. H. Ikeda, S. Nishi and M. Sakai, Biochem. J., 2004, 380, 515–521 CrossRef CAS PubMed.
  155. A. Lau, N. F. Villeneuve, Z. Sun, P. K. Wong and D. D. Zhang, Pharmacol. Res., 2008, 58, 262–270 CrossRef CAS PubMed.
  156. X. J. Wang, Z. Sun, N. F. Villeneuve, S. Zhang, F. Zhao, Y. Li, W. Chen, X. Yi, W. Zheng, G. T. Wondrak, P. K. Wong and D. D. Zhang, Carcinogenesis, 2008, 29, 1235–1243 CrossRef CAS PubMed.
  157. M. Selvakumaran, D. A. Pisarcik, R. Bao, A. T. Yeung and T. C. Hamilton, Cancer Res., 2003, 63, 1311–1316 CAS.
  158. R. Fujii, M. Mutoh, K. Niwa, K. Yamada, T. Aikou, M. Nakagawa, M. Kuwano and S. Akiyama, Jpn. J. Cancer Res., 1994, 85, 426–433 CrossRef CAS.
  159. K. D. Tew, Cancer Res., 1994, 54, 4313–4320 CAS.
  160. D. Ren, N. F. Villeneuve, T. Jiang, T. Wu, A. Lau, H. A. Toppin and D. D. Zhang, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 1433–1438 CrossRef CAS PubMed.
  161. X. Tang, H. Wang, L. Fan, X. Wu, A. Xin, H. Ren and X. J. Wang, Free Radical Biol. Med., 2011, 50, 1599–1609 CrossRef CAS PubMed.
  162. J. M. Cho, S. Manandhar, H. R. Lee, H. M. Park and M. K. Kwak, Cancer Lett., 2008, 260, 96–108 CrossRef CAS PubMed.
  163. L. Gao and G. E. Mann, Cardiovasc. Res., 2009, 82, 9–20 CrossRef CAS PubMed.
  164. J. D. Hayes and M. McMahon, Mol. Cell, 2006, 21, 732–734 CrossRef CAS PubMed.
  165. D. D. Zhang, Antioxid. Redox Signaling, 2010, 13, 1623–1626 CrossRef CAS PubMed.
  166. M. B. Sporn and K. T. Liby, Nat. Rev. Cancer, 2012, 12, 564–571 CrossRef CAS PubMed.
  167. S. M. Yeligar, K. Machida and V. K. Kalra, J. Biol. Chem., 2010, 285, 35359–35373 CrossRef CAS PubMed.
  168. V. Vasiliou, L. Qamar, A. Pappa, N. A. Sophos and D. R. Petersen, Arch. Biochem. Biophys., 2003, 413, 164–171 CrossRef CAS.
  169. F. Liu, S. Ichihara, W. M. Valentine, K. Itoh, M. Yamamoto, S. Sheik Mohideen, J. Kitoh and G. Ichihara, Toxicol. Sci., 2010, 115, 596–606 CrossRef CAS PubMed.
  170. J. Lamle, S. Marhenke, J. Borlak, R. von Wasielewski, C. J. Eriksson, R. Geffers, M. P. Manns, M. Yamamoto and A. Vogel, Gastroenterology, 2008, 134, 1159–1168 CrossRef CAS PubMed.
  171. Y. Tanaka, L. M. Aleksunes, R. L. Yeager, M. A. Gyamfi, N. Esterly, G. L. Guo and C. D. Klaassen, J. Pharmacol. Exp. Ther., 2008, 325, 655–664 CrossRef CAS PubMed.
  172. S. Chowdhry, M. H. Nazmy, P. J. Meakin, A. T. Dinkova-Kostova, S. V. Walsh, T. Tsujita, J. F. Dillon, M. L. Ashford and J. D. Hayes, Free Radical Biol. Med., 2010, 48, 357–371 CrossRef CAS PubMed.
  173. K. Okada, E. Warabi, H. Sugimoto, M. Horie, K. Tokushige, T. Ueda, N. Harada, K. Taguchi, E. Hashimoto, K. Itoh, T. Ishii, H. Utsunomiya, M. Yamamoto and J. Shoda, J. Gastroenterol., 2012, 47, 924–935 CrossRef PubMed.
  174. K. C. Wu, J. Liu and C. D. Klaassen, Toxicol. Appl. Pharmacol., 2012, 262, 321–329 CrossRef CAS PubMed.
  175. K. Taguchi, N. Fujikawa, M. Komatsu, T. Ishii, M. Unno, T. Akaike, H. Motohashi and M. Yamamoto, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 13561–13566 CrossRef CAS PubMed.
  176. H. Motohashi, T. O'Connor, F. Katsuoka, J. D. Engel and M. Yamamoto, Gene, 2002, 294, 1–12 CrossRef CAS.
  177. S. A. Reisman, I. L. Csanaky, L. M. Aleksunes and C. D. Klaassen, Toxicol. Sci., 2009, 109, 31–40 CrossRef CAS PubMed.
  178. L. M. Aleksunes, M. Goedken and J. E. Manautou, World J. Gastroenterol., 2006, 12, 1937–1940 CAS.
  179. H. Y. Kay, Y. W. Kim, H. Ryu da, S. H. Sung, S. J. Hwang and S. G. Kim, Br. J. Pharmacol., 2011, 163, 1653–1665 CrossRef CAS PubMed.
  180. Y. W. Kim, S. H. Ki, J. R. Lee, S. J. Lee, C. W. Kim, S. C. Kim and S. G. Kim, Chem.-Biol. Interact., 2006, 161, 125–138 CrossRef CAS PubMed.
  181. S. A. Reisman, L. M. Aleksunes and C. D. Klaassen, Biochem. Pharmacol., 2009, 77, 1273–1282 CrossRef CAS PubMed.
  182. N. G. Innamorato, A. I. Rojo, A. J. Garcia-Yague, M. Yamamoto, M. L. de Ceballos and A. Cuadrado, J. Immunol., 2008, 181, 680–689 CAS.
  183. A. I. Rojo, N. G. Innamorato, A. M. Martin-Moreno, M. L. De Ceballos, M. Yamamoto and A. Cuadrado, Glia, 2010, 58, 588–598 Search PubMed.
  184. J. Kim, Y. N. Cha and Y. J. Surh, Mutat. Res., 2010, 690, 12–23 CrossRef CAS PubMed.
  185. S. Biswal, R. K. Thimmulappa and C. J. Harvey, Proc. Am. Thorac. Soc., 2012, 9, 47–51 CrossRef CAS PubMed.
  186. R. Dworski, W. Han, T. S. Blackwell, A. Hoskins and M. L. Freeman, Free Radical Biol. Med., 2011, 51, 516–521 CrossRef CAS PubMed.
  187. S. Braun, C. Hanselmann, M. G. Gassmann, U. auf dem Keller, C. Born-Berclaz, K. Chan, Y. W. Kan and S. Werner, Mol. Cell. Biol., 2002, 22, 5492–5505 CrossRef CAS.
  188. T. Arisawa, T. Tahara, T. Shibata, M. Nagasaka, M. Nakamura, Y. Kamiya, H. Fujita, S. Hasegawa, T. Takagi, F. Y. Wang, I. Hirata and H. Nakano, Int. J. Mol. Med., 2007, 19, 143–148 CAS.
  189. X. L. Chen, G. Dodd, S. Thomas, X. Zhang, M. A. Wasserman, B. H. Rovin and C. Kunsch, Am. J. Physiol.: Heart Circ. Physiol., 2006, 290, H1862–1870 CrossRef CAS PubMed.
  190. K. Srisook, C. Kim and Y. N. Cha, Antioxid. Redox Signaling, 2005, 7, 1674–1687 CrossRef CAS PubMed.
  191. C. H. He, P. Gong, B. Hu, D. Stewart, M. E. Choi, A. M. Choi and J. Alam, J. Biol. Chem., 2001, 276, 20858–20865 CrossRef CAS PubMed.
  192. F. Tamion, V. Richard, S. Renet and C. Thuillez, Am. J. Physiol.: Gastrointest. Liver Physiol., 2007, 293, G1308–1314 CrossRef CAS PubMed.
  193. A. Almolki, A. Guenegou, S. Golda, L. Boyer, M. Benallaoua, N. Amara, R. Bachoual, C. Martin, F. Rannou, S. Lanone, J. Dulak, P. R. Burgel, J. El-Benna, B. Leynaert, M. Aubier and J. Boczkowski, Am. J. Pathol., 2008, 173, 981–992 CrossRef CAS PubMed.
  194. P. J. Syapin, Br. J. Pharmacol., 2008, 155, 623–640 CrossRef CAS PubMed.
  195. W. O. Osburn, B. Karim, P. M. Dolan, G. Liu, M. Yamamoto, D. L. Huso and T. W. Kensler, Int. J. Cancer, 2007, 121, 1883–1891 CrossRef CAS PubMed.
  196. R. K. Thimmulappa, H. Lee, T. Rangasamy, S. P. Reddy, M. Yamamoto, T. W. Kensler and S. Biswal, J. Clin. Invest., 2006, 116, 984–995 CAS.
  197. S. Yoshida, T. Kato, S. Sakurada, C. Kurono, J. P. Yang, N. Matsui, T. Soji and T. Okamoto, Int. Immunol., 1999, 11, 151–158 CrossRef CAS.
  198. S. H. Lee, D. H. Sohn, X. Y. Jin, S. W. Kim, S. C. Choi and G. S. Seo, Biochem. Pharmacol., 2007, 74, 870–880 CrossRef CAS PubMed.
  199. F. M. Ho, H. C. Kang, S. T. Lee, Y. Chao, Y. C. Chen, L. J. Huang and W. W. Lin, Biochem. Pharmacol., 2007, 74, 298–308 CrossRef CAS PubMed.
  200. Q. Ma, L. Battelli and A. F. Hubbs, Am. J. Pathol., 2006, 168, 1960–1974 CrossRef CAS PubMed.
  201. J. M. Lee, K. Chan, Y. W. Kan and J. A. Johnson, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 9751–9756 CrossRef CAS PubMed.
  202. K. Yoh, K. Itoh, A. Enomoto, A. Hirayama, N. Yamaguchi, M. Kobayashi, N. Morito, A. Koyama, M. Yamamoto and S. Takahashi, Kidney Int., 2001, 60, 1343–1353 CrossRef CAS PubMed.
  203. K. D. Poss and S. Tonegawa, Proc. Natl. Acad. Sci. U. S. A., 1997, 94, 10919–10924 CrossRef CAS.
  204. K. Kataoka, H. Handa and M. Nishizawa, J. Biol. Chem., 2001, 276, 34074–34081 CrossRef CAS PubMed.
  205. J. Li, T. D. Stein and J. A. Johnson, Physiol. Genomics, 2004, 18, 261–272 CrossRef CAS PubMed.
  206. D. A. Johnson, S. Amirahmadi, C. Ward, Z. Fabry and J. A. Johnson, Toxicol. Sci., 2010, 114, 237–246 CrossRef CAS PubMed.
  207. F. Giacco and M. Brownlee, Circ. Res., 2010, 107, 1058–1070 CrossRef CAS PubMed.
  208. J. L. Evans, I. D. Goldfine, B. A. Maddux and G. M. Grodsky, Endocr. Rev., 2002, 23, 599–622 CrossRef CAS PubMed.
  209. Y. Tan, T. Ichikawa, J. Li, Q. Si, H. Yang, X. Chen, C. S. Goldblatt, C. J. Meyer, X. Li, L. Cai and T. Cui, Diabetes, 2011, 60, 625–633 CrossRef CAS PubMed.
  210. M. S. Bitar and F. Al-Mulla, Am. J. Physiol.: Endocrinol. Metab., 2011, 301, E1119–1129 CrossRef CAS PubMed.
  211. S. Siewert, I. González, L. Santillán, R. Lucero, M. S. Ojeda and M. S. Gimenez, J. Diabetes Mellitus, 2013, 3, 71–78 CrossRef.
  212. K. Yoh, A. Hirayama, K. Ishizaki, A. Yamada, M. Takeuchi, S. Yamagishi, N. Morito, T. Nakano, M. Ojima, H. Shimohata, K. Itoh, S. Takahashi and M. Yamamoto, Genes Cells, 2008, 13, 1159–1170 CAS.
  213. T. Jiang, Z. Huang, Y. Lin, Z. Zhang, D. Fang and D. D. Zhang, Diabetes, 2010, 59, 850–860 CrossRef CAS PubMed.
  214. X. He, H. Kan, L. Cai and Q. Ma, J. Mol. Cell. Cardiol., 2009, 46, 47–58 CrossRef CAS PubMed.
  215. A. Uruno, Y. Furusawa, Y. Yagishita, T. Fukutomi, H. Muramatsu, T. Negishi, A. Sugawara, T. W. Kensler and M. Yamamoto, Mol. Cell. Biol., 2013, 33, 2996–3010 CrossRef CAS PubMed.
  216. G. V. Velmurugan, N. R. Sundaresan, M. P. Gupta and C. White, Cardiovasc. Res., 2013, 100, 143–150 CrossRef CAS PubMed.
  217. R. Howden, Oxid. Med. Cell. Longevity, 2013, 104308 Search PubMed.
  218. J. G. Park and G. T. Oh, BMB Rep., 2011, 44, 497–505 CrossRef CAS.
  219. D. G. Harrison, M. C. Gongora, T. J. Guzik and J. Widder, J. Am. Soc. Hypertens., 2007, 1, 30–44 CrossRef PubMed.
  220. D. B. Sawyer, Am. J. Med. Sci., 2011, 342, 120–124 CrossRef PubMed.
  221. I. Afanas'ev, Oxid. Med. Cell. Longevity, 2011, 2011, 293769 CrossRef PubMed.
  222. B. M. Hybertson, B. Gao, S. K. Bose and J. M. McCord, Mol. Aspects Med., 2011, 32, 234–246 CrossRef CAS PubMed.
  223. B. Buijsse, D. H. Lee, L. Steffen, R. R. Erickson, R. V. Luepker, D. R. Jacobs, Jr and J. L. Holtzman, PLoS One, 2012, 7, e38901 CAS.
  224. T. E. Sussan, J. Jun, R. Thimmulappa, D. Bedja, M. Antero, K. L. Gabrielson, V. Y. Polotsky and S. Biswal, PLoS One, 2008, 3, e3791 Search PubMed.
  225. A. C. Brewer, T. V. Murray, M. Arno, M. Zhang, N. P. Anilkumar, G. E. Mann and A. M. Shah, Free Radical Biol. Med., 2011, 51, 205–215 CrossRef CAS PubMed.
  226. J. W. Calvert, S. Jha, S. Gundewar, J. W. Elrod, A. Ramachandran, C. B. Pattillo, C. G. Kevil and D. J. Lefer, Circ. Res., 2009, 105, 365–374 CrossRef CAS PubMed.
  227. Y. Zhang, M. Sano, K. Shinmura, K. Tamaki, Y. Katsumata, T. Matsuhashi, S. Morizane, H. Ito, T. Hishiki, J. Endo, H. Zhou, S. Yuasa, R. Kaneda, M. Suematsu and K. Fukuda, J. Mol. Cell. Cardiol., 2010, 49, 576–586 CrossRef CAS PubMed.
  228. N. S. Rajasekaran, P. Connell, E. S. Christians, L. J. Yan, R. P. Taylor, A. Orosz, X. Q. Zhang, T. J. Stevenson, R. M. Peshock, J. A. Leopold, W. H. Barry, J. Loscalzo, S. J. Odelberg and I. J. Benjamin, Cell, 2007, 130, 427–439 CrossRef CAS PubMed.
  229. N. S. Rajasekaran, S. Varadharaj, G. D. Khanderao, C. J. Davidson, S. Kannan, M. A. Firpo, J. L. Zweier and I. J. Benjamin, Antioxid. Redox Signaling, 2011, 14, 957–971 CrossRef CAS PubMed.
  230. S. E. Purdom-Dickinson, Y. Lin, M. Dedek, S. Morrissy, J. Johnson and Q. M. Chen, J. Mol. Cell. Cardiol., 2007, 42, 159–176 CrossRef CAS PubMed.
  231. H. Ashrafian, G. Czibik, M. Bellahcene, D. Aksentijevic, A. C. Smith, S. J. Mitchell, M. S. Dodd, J. Kirwan, J. J. Byrne, C. Ludwig, H. Isackson, A. Yavari, N. B. Stottrup, H. Contractor, T. J. Cahill, N. Sahgal, D. R. Ball, R. I. Birkler, I. Hargreaves, D. A. Tennant, J. Land, C. A. Lygate, M. Johannsen, R. K. Kharbanda, S. Neubauer, C. Redwood, R. de Cabo, I. Ahmet, M. Talan, U. L. Gunther, A. J. Robinson, M. R. Viant, P. J. Pollard, D. J. Tyler and H. Watkins, Cell Metab., 2012, 15, 361–371 CrossRef CAS PubMed.
  232. H. Dreger, K. Westphal, A. Weller, G. Baumann, V. Stangl, S. Meiners and K. Stangl, Cardiovasc. Res., 2009, 83, 354–361 CrossRef CAS PubMed.
  233. H. Lee, J. H. Bae and S. R. Lee, J. Neurosci. Res., 2004, 77, 892–900 CrossRef CAS PubMed.
  234. D. H. Shin, Y. C. Bae, J. S. Kim-Han, J. H. Lee, I. Y. Choi, K. H. Son, S. S. Kang, W. K. Kim and B. H. Han, J. Neurochem., 2006, 96, 561–572 CrossRef CAS PubMed.
  235. A. Simonyi, Q. Wang, R. L. Miller, M. Yusof, P. B. Shelat, A. Y. Sun and G. Y. Sun, Mol. Neurobiol., 2005, 31, 135–147 CrossRef CAS PubMed.
  236. K. Itoh, T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satoh, I. Hatayama, M. Yamamoto and Y. Nabeshima, Biochem. Biophys. Res. Commun., 1997, 236, 313–322 CrossRef CAS.
  237. H. Y. Cho and S. R. Kleeberger, Toxicol. Appl. Pharmacol., 2010, 244, 43–56 CrossRef CAS PubMed.
  238. C. Zoja, A. Benigni and G. Remuzzi, Nephrol., Dial., Transplant., 2013 DOI:10.1093/ndt/gft224.
  239. H. Y. Cho, A. E. Jedlicka, S. P. Reddy, T. W. Kensler, M. Yamamoto, L. Y. Zhang and S. R. Kleeberger, Am. J. Respir. Cell Mol. Biol., 2002, 26, 175–182 CrossRef CAS PubMed.
  240. S. Papaiahgari, A. Yerrapureddy, S. R. Reddy, N. M. Reddy, O. J. Dodd, M. T. Crow, D. N. Grigoryev, K. Barnes, R. M. Tuder, M. Yamamoto, T. W. Kensler, S. Biswal, W. Mitzner, P. M. Hassoun and S. P. Reddy, Am. J. Respir. Crit. Care Med., 2007, 176, 1222–1235 CrossRef CAS PubMed.
  241. K. Chan and Y. W. Kan, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 12731–12736 CrossRef CAS.
  242. H. Y. Cho, S. P. Reddy, M. Yamamoto and S. R. Kleeberger, FASEB J., 2004, 18, 1258–1260 CAS.
  243. H. Y. Cho, F. Imani, L. Miller-DeGraff, D. Walters, G. A. Melendi, M. Yamamoto, F. P. Polack and S. R. Kleeberger, Am. J. Respir. Crit. Care Med., 2009, 179, 138–150 CrossRef CAS PubMed.
  244. R. K. Thimmulappa, T. Rangasamy, J. Alam and S. Biswal, Med. Chem., 2008, 4, 473–481 CrossRef CAS.
  245. H. J. Kim and N. D. Vaziri, Am. J. Physiol.: Renal, Fluid Electrolyte Physiol., 2010, 298, F662–671 CrossRef CAS PubMed.
  246. H. J. Kim, T. Sato, B. Rodriguez-Iturbe and N. D. Vaziri, J. Pharmacol. Exp. Ther., 2011, 337, 583–590 CrossRef CAS PubMed.
  247. K. Kanki, T. Umemura, Y. Kitamura, Y. Ishii, Y. Kuroiwa, Y. Kodama, K. Itoh, M. Yamamoto, A. Nishikawa and M. Hirose, Toxicol. Pathol., 2008, 36, 353–361 CrossRef CAS PubMed.
  248. Y. Tanaka, L. M. Aleksunes, M. J. Goedken, C. Chen, S. A. Reisman, J. E. Manautou and C. D. Klaassen, Toxicol. Appl. Pharmacol., 2008, 231, 364–373 CrossRef CAS PubMed.
  249. M. Liu, D. N. Grigoryev, M. T. Crow, M. Haas, M. Yamamoto, S. P. Reddy and H. Rabb, Kidney Int., 2009, 76, 277–285 CrossRef CAS PubMed.
  250. L. M. Aleksunes, M. J. Goedken, C. E. Rockwell, J. Thomale, J. E. Manautou and C. D. Klaassen, J. Pharmacol. Exp. Ther., 2010, 335, 2–12 CrossRef CAS PubMed.
  251. H. Zheng, S. A. Whitman, W. Wu, G. T. Wondrak, P. K. Wong, D. Fang and D. D. Zhang, Diabetes, 2011, 60, 3055–3066 CrossRef CAS PubMed.
  252. E. J. Calabrese, K. A. Bachmann, A. J. Bailer, P. M. Bolger, J. Borak, L. Cai, N. Cedergreen, M. G. Cherian, C. C. Chiueh, T. W. Clarkson, R. R. Cook, D. M. Diamond, D. J. Doolittle, M. A. Dorato, S. O. Duke, L. Feinendegen, D. E. Gardner, R. W. Hart, K. L. Hastings, A. W. Hayes, G. R. Hoffmann, J. A. Ives, Z. Jaworowski, T. E. Johnson, W. B. Jonas, N. E. Kaminski, J. G. Keller, J. E. Klaunig, T. B. Knudsen, W. J. Kozumbo, T. Lettieri, S. Z. Liu, A. Maisseu, K. I. Maynard, E. J. Masoro, R. O. McClellan, H. M. Mehendale, C. Mothersill, D. B. Newlin, H. N. Nigg, F. W. Oehme, R. F. Phalen, M. A. Philbert, S. I. Rattan, J. E. Riviere, J. Rodricks, R. M. Sapolsky, B. R. Scott, C. Seymour, D. A. Sinclair, J. Smith-Sonneborn, E. T. Snow, L. Spear, D. E. Stevenson, Y. Thomas, M. Tubiana, G. M. Williams and M. P. Mattson, Toxicol. Appl. Pharmacol., 2007, 222, 122–128 CrossRef CAS PubMed.
  253. M. P. Mattson, Ageing Res. Rev., 2008, 7, 1–7 CrossRef CAS PubMed.
  254. M. P. Mattson and A. Cheng, Trends Neurosci., 2006, 29, 632–639 CrossRef CAS PubMed.
  255. T. G. Son, S. Camandola and M. P. Mattson, NeuroMol. Med., 2008, 10, 236–246 CrossRef CAS PubMed.
  256. J. Maher and M. Yamamoto, Toxicol. Appl. Pharmacol., 2010, 244, 4–15 CrossRef CAS PubMed.
  257. D. L. Sudakin, Toxicol. Rev., 2003, 22, 83–90 CrossRef PubMed.
  258. M. H. Kweon, V. M. Adhami, J. S. Lee and H. Mukhtar, J. Biol. Chem., 2006, 281, 33761–33772 CrossRef CAS PubMed.
  259. C. J. Wruck, M. Claussen, G. Fuhrmann, L. Romer, A. Schulz, T. Pufe, V. Waetzig, M. Peipp, T. Herdegen and M. E. Gotz, J. Neural Transm. Suppl., 2007, 57–67 CAS.
  260. A. T. Dinkova-Kostova, W. D. Holtzclaw and T. W. Kensler, Chem. Res. Toxicol., 2005, 18, 1779–1791 CrossRef CAS PubMed.
  261. T. Prestera, Y. Zhang, S. R. Spencer, C. A. Wilczak and P. Talalay, Adv. Enzyme Regul., 1993, 33, 281–296 CrossRef CAS.
  262. A. T. Dinkova-Kostova, M. A. Massiah, R. E. Bozak, R. J. Hicks and P. Talalay, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 3404–3409 CrossRef CAS PubMed.
  263. S. R. Spencer, L. A. Xue, E. M. Klenz and P. Talalay, Biochem. J., 1991, 273(Pt 3), 711–717 CAS.
  264. P. Talalay, M. J. De Long and H. J. Prochaska, Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 8261–8265 CrossRef CAS.
  265. J. C. Powers, J. L. Asgian, O. D. Ekici and K. E. James, Chem. Rev., 2002, 102, 4639–4750 CrossRef CAS PubMed.
  266. A. T. Dinkova-Kostova, C. Abeygunawardana and P. Talalay, J. Med. Chem., 1998, 41, 5287–5296 CrossRef CAS PubMed.
  267. E. J. Calabrese, Crit. Rev. Toxicol., 2008, 38, 249–252 CrossRef CAS PubMed.
  268. R. J. Williams, J. P. Spencer and C. Rice-Evans, Free Radical Biol. Med., 2004, 36, 838–849 CrossRef CAS PubMed.
  269. H. van der Woude, M. G. Boersma, G. M. Alink, J. Vervoort and I. M. Rietjens, Chem.-Biol. Interact., 2006, 160, 193–203 CrossRef CAS PubMed.
  270. Y. Y. Lee-Hilz, A. M. Boerboom, A. H. Westphal, W. J. Berkel, J. M. Aarts and I. M. Rietjens, Chem. Res. Toxicol., 2006, 19, 1499–1505 CrossRef CAS PubMed.
  271. X. J. Wang, J. D. Hayes, L. G. Higgins, C. R. Wolf and A. T. Dinkova-Kostova, Chem. Biol., 2010, 17, 75–85 CrossRef CAS PubMed.
  272. M. Alia, R. Mateos, S. Ramos, E. Lecumberri, L. Bravo and L. Goya, Eur. J. Nutr., 2006, 45, 19–28 CrossRef CAS PubMed.
  273. A. Murakami, H. Ashida and J. Terao, Cancer Lett., 2008, 269, 315–325 CrossRef CAS PubMed.
  274. G. Galati and P. J. O'Brien, Free Radical Biol. Med., 2004, 37, 287–303 CrossRef CAS PubMed.
  275. S. Tanigawa, M. Fujii and D. X. Hou, Free Radical Biol. Med., 2007, 42, 1690–1703 CrossRef CAS PubMed.
  276. P. Yao, A. Nussler, L. Liu, L. Hao, F. Song, A. Schirmeier and N. Nussler, J. Hepatol., 2007, 47, 253–261 CrossRef CAS PubMed.
  277. L. Liang, C. Gao, M. Luo, W. Wang, C. Zhao, Y. Zu, T. Efferth and Y. Fu, J. Agric. Food Chem., 2013, 61, 2755–2761 CrossRef CAS PubMed.
  278. A. T. Dinkova-Kostova, W. D. Holtzclaw, R. N. Cole, K. Itoh, N. Wakabayashi, Y. Katoh, M. Yamamoto and P. Talalay, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 11908–11913 CrossRef CAS PubMed.
  279. C. C. Wu, M. C. Hsu, C. W. Hsieh, J. B. Lin, P. H. Lai and B. S. Wung, Life Sci., 2006, 78, 2889–2897 CrossRef CAS PubMed.
  280. C. Y. Lee, E. H. Chew and M. L. Go, Eur. J. Med. Chem., 2010, 45, 2957–2971 CrossRef CAS PubMed.
  281. Z. A. Shah, R. C. Li, A. S. Ahmad, T. W. Kensler, M. Yamamoto, S. Biswal and S. Dore, J. Cereb. Blood Flow Metab., 2010, 30, 1951–1961 CrossRef CAS PubMed.
  282. H. Lou, X. Jing, D. Ren, X. Wei and X. Zhang, Neurochem. Int., 2012, 61, 251–257 CrossRef CAS PubMed.
  283. Q. Hu, D. D. Zhang, L. Wang, H. Lou and D. Ren, Food Chem. Toxicol., 2012, 50, 1927–1932 CrossRef CAS PubMed.
  284. S. E. Lee, S. I. Jeong, H. Yang, C. S. Park, Y. H. Jin and Y. S. Park, J. Cell. Biochem., 2011, 112, 2352–2360 CrossRef CAS PubMed.
  285. S. S. Gao, B.-M. Choi, X. Y. Chen, R. Z. Zhu, Y. Kim, H. So, R. Park, M. Sung and B.-R. Kim, Pharm. Res., 2010, 27, 235–245 CrossRef CAS PubMed.
  286. X. Han, J. Pan, D. Ren, Y. Cheng, P. Fan and H. Lou, Food Chem. Toxicol., 2008, 46, 3140–3146 CrossRef CAS PubMed.
  287. G. S. Jeong, D. S. Lee, B. Li, H. J. Lee, E. C. Kim and Y. C. Kim, Eur. J. Pharmacol., 2010, 644, 230–237 CrossRef CAS PubMed.
  288. S. B. Lee, K. H. Cha, D. Selenge, A. Solongo and C. W. Nho, Biol. Pharm. Bull., 2007, 30, 1074–1079 CAS.
  289. J. H. Lim, H. S. Park, J. K. Choi, I. S. Lee and H. J. Choi, Arch. Pharmacol. Res., 2007, 30, 1590–1598 CrossRef CAS.
  290. W. Ma, L. Yuan, H. Yu, B. Ding, Y. Xi, J. Feng and R. Xiao, Int. J. Dev. Neurosci., 2010, 28, 289 CrossRef CAS PubMed.
  291. R. Wang, J. Tu, Q. Zhang, X. Zhang, Y. Zhu, W. Ma, C. Cheng, D. W. Brann and F. Yang, Hippocampus, 2013, 23, 634–647 CrossRef CAS PubMed.
  292. X. Zhai, M. Lin, F. Zhang, Y. Hu, X. Xu, Y. Li, K. Liu, X. Ma, X. Tian and J. Yao, Mol. Nutr. Food Res., 2013, 57, 249–259 CAS.
  293. Y. P. Hwang and H. G. Jeong, Toxicol. Appl. Pharmacol., 2008, 233, 371–381 CrossRef CAS PubMed.
  294. H. J. Kim, S. S. Lim, I. S. Park, J. S. Lim, J. Y. Seo and J. S. Kim, J. Agric. Food Chem., 2012, 60, 5583–5589 CrossRef CAS PubMed.
  295. J. Gu, X. Sun, G. Wang, M. Li and M. Chi, Molecules, 2011, 16, 9234–9244 CrossRef CAS PubMed.
  296. Y. Izumi, A. Matsumura, S. Wakita, K. Akagi, H. Fukuda, T. Kume, K. Irie, Y. Takada-Takatori, H. Sugimoto, T. Hashimoto and A. Akaike, Free Radical Biol. Med., 2012, 53, 669–679 CrossRef CAS PubMed.
  297. D. S. Lee, B. Li, N. K. Im, Y. C. Kim and G. S. Jeong, Int. Immunopharmacol., 2013, 16, 114–121 CrossRef CAS PubMed.
  298. Y. C. Yang, C. K. Lii, A. H. Lin, Y. W. Yeh, H. T. Yao, C. C. Li, K. L. Liu and H. W. Chen, Free Radical Biol. Med., 2011, 51, 2073–2081 CrossRef CAS PubMed.
  299. W. C. Chen, S. Y. Wang, C. C. Chiu, C. K. Tseng, C. K. Lin, H. C. Wang and J. C. Lee, Antimicrob. Agents Chemother., 2013, 57, 1180–1191 CrossRef CAS PubMed.
  300. J. S. Kil, Y. Son, Y. K. Cheong, N. H. Kim, H. J. Jeong, J. W. Kwon, E. J. Lee, T. O. Kwon, H. T. Chung and H. O. Pae, J. Clin. Biochem. Nutr., 2012, 50, 53–58 CrossRef CAS PubMed.
  301. I. S. Lee, J. Lim, J. Gal, J. C. Kang, H. J. Kim, B. Y. Kang and H. J. Choi, Neurochem. Int., 2011, 58, 153–160 CrossRef CAS PubMed.
  302. V. Krajka-Kuzniak, J. Paluszczak, L. Celewicz, J. Barciszewski and W. Baer-Dubowska, Food Chem. Toxicol., 2013, 51, 202–209 CrossRef CAS PubMed.
  303. H. E. Kleiner, S. V. Vulimiri, L. Miller, W. H. Johnson, Jr, C. P. Whitman and J. DiGiovanni, Carcinogenesis, 2001, 22, 73–82 CrossRef CAS.
  304. A. Murakami, K. Wada, N. Ueda, K. Sasaki, M. Haga, W. Kuki, Y. Takahashi, H. Yonei, K. Koshimizu and H. Ohigashi, Nutr. Cancer, 2000, 36, 191–199 CrossRef CAS PubMed.
  305. H. E. Kleiner, X. Xia, J. Sonoda, J. Zhang, E. Pontius, J. Abey, R. M. Evans, D. D. Moore and J. DiGiovanni, Toxicol. Appl. Pharmacol., 2008, 232, 337–350 CrossRef CAS PubMed.
  306. M. Prince, Y. Li, A. Childers, K. Itoh, M. Yamamoto and H. E. Kleiner, Toxicol. Lett., 2009, 185, 180–186 CrossRef CAS PubMed.
  307. P. T. Thuong, Y. R. Pokharel, M. Y. Lee, S. K. Kim, K. Bae, N. D. Su, W. K. Oh and K. W. Kang, Biol. Pharm. Bull., 2009, 32, 1527–1532 CAS.
  308. L. Li, J. K. Du, L. Y. Zou, T. Wu, Y. W. Lee and Y. H. Kim, J. Evidence-Based Complementary Altern. Med., 2013, 2013, 467245 Search PubMed.
  309. B. Wilkinson and J. Micklefield, Nat. Chem. Biol., 2007, 3, 379–386 CrossRef CAS PubMed.
  310. A. T. Dinkova-Kostova, K. T. Liby, K. K. Stephenson, W. D. Holtzclaw, X. Gao, N. Suh, C. Williams, R. Risingsong, T. Honda, G. W. Gribble, M. B. Sporn and P. Talalay, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 4584–4589 CrossRef CAS PubMed.
  311. J. Feng, P. Zhang, X. Chen and G. He, J. Cell. Biochem., 2011, 112, 1524–1531 CrossRef CAS PubMed.
  312. X. Wang, X. L. Ye, R. Liu, H. L. Chen, H. Bai, X. Liang, X. D. Zhang, Z. Wang, W. L. Li and C. X. Hai, Chem.-Biol. Interact., 2010, 184, 328–337 CrossRef CAS PubMed.
  313. E. Gonzalez-Burgos, M. E. Carretero and M. P. Gomez-Serranillos, J. Ethnopharmacol., 2013, 147, 645–652 CrossRef CAS PubMed.
  314. Y. P. Hwang and H. G. Jeong, FEBS Lett., 2008, 582, 2655–2662 CrossRef CAS PubMed.
  315. J. H. Lyu, G. S. Lee, K. H. Kim, H. W. Kim, S. I. Cho, S. I. Jeong, H. J. Kim, Y. S. Ju, H. K. Kim, R. T. Sadikot, J. W. Christman, S. R. Oh, H. K. Lee, K. S. Ahn and M. Joo, J. Ethnopharmacol., 2011, 137, 1442–1449 CrossRef CAS PubMed.
  316. Y. Du, N. F. Villeneuve, X. J. Wang, Z. Sun, W. Chen, J. Li, H. Lou, P. K. Wong and D. D. Zhang, Environ. Health Perspect., 2008, 116, 1154–1161 CrossRef CAS PubMed.
  317. T. Satoh, K. Kosaka, K. Itoh, A. Kobayashi, M. Yamamoto, Y. Shimojo, C. Kitajima, J. Cui, J. Kamins, S. Okamoto, M. Izumi, T. Shirasawa and S. A. Lipton, J. Neurochem., 2008, 104, 1116–1131 CrossRef CAS PubMed.
  318. D. Martin, A. I. Rojo, M. Salinas, R. Diaz, G. Gallardo, J. Alam, C. M. De Galarreta and A. Cuadrado, J. Biol. Chem., 2004, 279, 8919–8929 CrossRef CAS PubMed.
  319. S. P. Guan, W. Tee, D. S. Ng, T. K. Chan, H. Y. Peh, W. E. Ho, C. Cheng, J. C. Mak and W. S. Wong, Br. J. Pharmacol., 2013, 168, 1707–1718 CrossRef CAS PubMed.
  320. E. González-Burgos, M. Carretero and M. Gómez-Serranillos, Phytochemistry, 2013, 93, 116–123 CrossRef PubMed.
  321. E. Gonzalez-Burgos, M. E. Carretero and M. P. Gomez-Serranillos, Neuroscience, 2013, 231, 400–412 CrossRef CAS PubMed.
  322. W. Y. Seo, A. R. Goh, S. M. Ju, H. Y. Song, D. J. Kwon, J. G. Jun, B. C. Kim, S. Y. Choi and J. Park, Biochem. Biophys. Res. Commun., 2011, 407, 535–540 CrossRef CAS PubMed.
  323. B. Li, D. S. Lee, Y. Kang, N. Q. Yao, R. B. An and Y. C. Kim, Food Chem. Toxicol., 2013, 53, 317–324 CrossRef CAS PubMed.
  324. W. H. Yap, K. S. Khoo, A. S. H. Ho and Y. M. Lim, Biomed. Prev. Nutr., 2012, 2, 51–58 CrossRef PubMed.
  325. H. O. Pae, G. S. Jeong, H. S. Kim, W. H. Woo, H. Y. Rhew, D. H. Sohn, Y. C. Kim and H. T. Chung, Inflammation Res., 2007, 56, 520–526 CrossRef CAS PubMed.
  326. D. S. Lee, H. G. Choi, K. Wan Woo, D. G. Kang, H. S. Lee, H. Oh, K. Ro Lee and Y. C. Kim, Eur. J. Pharmacol., 2013, 715, 123–132 CrossRef CAS PubMed.
  327. J. Y. Seo, J. Park, H. J. Kim, I. A. Lee, J. S. Lim, S. S. Lim, S. J. Choi, J. H. Park, H. J. Kang and J. S. Kim, J. Med. Food, 2009, 12, 1038–1045 CrossRef CAS PubMed.
  328. Y. Nakamura, C. Yoshida, A. Murakami, H. Ohigashi, T. Osawa and K. Uchida, FEBS Lett., 2004, 572, 245–250 CrossRef CAS PubMed.
  329. S. Y. Park, J. Park da, Y. H. Kim, Y. Kim, Y. W. Choi and S. J. Lee, Int. Immunopharmacol., 2011, 11, 1907–1915 CrossRef CAS PubMed.
  330. G. T. Wondrak, C. M. Cabello, N. F. Villeneuve, S. Zhang, S. Ley, Y. Li, Z. Sun and D. D. Zhang, Free Radical Biol. Med., 2008, 45, 385–395 CrossRef CAS PubMed.
  331. T. C. Huang, Y. L. Chung, M. L. Wu and S. M. Chuang, J. Agric. Food Chem., 2011, 59, 5164–5171 CrossRef CAS PubMed.
  332. G. T. Wondrak, N. F. Villeneuve, S. D. Lamore, A. S. Bause, T. Jiang and D. D. Zhang, Molecules, 2010, 15, 3338–3355 CrossRef CAS PubMed.
  333. B. B. Aggarwal and B. Sung, Trends Pharmacol. Sci., 2009, 30, 85–94 CrossRef CAS PubMed.
  334. R. Motterlini, R. Foresti, R. Bassi and C. J. Green, Free Radical Biol. Med., 2000, 28, 1303–1312 CrossRef CAS.
  335. G. Scapagnini, R. Foresti, V. Calabrese, A. M. Giuffrida Stella, C. J. Green and R. Motterlini, Mol. Pharmacol., 2002, 61, 554–561 CrossRef CAS.
  336. N. Hill-Kapturczak, V. Thamilselvan, F. Liu, H. S. Nick and A. Agarwal, Am. J. Physiol.: Renal, Fluid Electrolyte Physiol., 2001, 281, F851–859 CAS.
  337. B. M. Dietz, D. Liu, G. K. Hagos, P. Yao, A. Schinkovitz, S. M. Pro, S. Deng, N. R. Farnsworth, G. F. Pauli, R. B. van Breemen and J. L. Bolton, Chem. Res. Toxicol., 2008, 21, 1939–1948 CrossRef CAS PubMed.
  338. B. Peng, P. Zhao, Y. P. Lu, M. M. Chen, H. Sun, X. M. Wu and L. Zhu, Brain Res., 2013, 1520, 168–177 CrossRef CAS PubMed.
  339. X. Zhang and Z. Ma, Anal. Bioanal. Chem., 2010, 397, 1975–1984 CrossRef CAS PubMed.
  340. X. Zhang, X. Zhao and Z. Ma, Toxicol. Lett., 2010, 199, 93–101 CrossRef CAS PubMed.
  341. M. J. De Long, H. J. Prochaska and P. Talalay, Cancer Res., 1985, 45, 546–551 CAS.
  342. H. J. Prochaska, M. J. De Long and P. Talalay, Proc. Natl. Acad. Sci. U. S. A., 1985, 82, 8232–8236 CrossRef CAS.
  343. R. V. Bensasson, V. Zoete, A. T. Dinkova-Kostova and P. Talalay, Chem. Res. Toxicol., 2008, 21, 805–812 CrossRef CAS PubMed.
  344. H. K. Na, E. H. Kim, J. H. Jung, H. H. Lee, J. W. Hyun and Y. J. Surh, Arch. Biochem. Biophys., 2008, 476, 171–177 CrossRef CAS PubMed.
  345. C. K. Andreadi, L. M. Howells, P. A. Atherfold and M. M. Manson, Mol. Pharmacol., 2006, 69, 1033–1040 CAS.
  346. G. Shen, C. Xu, R. Hu, M. R. Jain, S. Nair, W. Lin, C. S. Yang, J. Y. Chan and A. N. Kong, Pharm. Res., 2005, 22, 1805–1820 CrossRef CAS PubMed.
  347. N. Sriram, S. Kalayarasan and G. Sudhandiran, Pulm. Pharmacol. Ther., 2009, 22, 221–236 CrossRef CAS PubMed.
  348. S. Sang, J. D. Lambert, J. Hong, S. Tian, M. J. Lee, R. E. Stark, C. T. Ho and C. S. Yang, Chem. Res. Toxicol., 2005, 18, 1762–1769 CrossRef CAS PubMed.
  349. L. Liang, M. Luo, Y. Fu, Y. Zu, W. Wang, C. Gu, C. Zhao, C. Li and T. Efferth, Toxicol. Lett., 2013, 219, 254–261 CrossRef CAS PubMed.
  350. C. M. Chong, Z. Y. Zhou, V. Razmovski-Naumovski, G. Z. Cui, L. Q. Zhang, F. Sa, P. M. Hoi, K. Chan and S. M. Lee, Neurosci. Lett., 2013, 543, 121–125 CrossRef CAS PubMed.
  351. Z. C. Ma, Q. Hong, Y. G. Wang, H. L. Tan, C. R. Xiao, Q. D. Liang, B. L. Zhang and Y. Gao, Biol. Pharm. Bull., 2010, 33, 29–34 CAS.
  352. G. Scapagnini, D. A. Butterfield, C. Colombrita, R. Sultana, A. Pascale and V. Calabrese, Antioxid. Redox Signaling, 2004, 6, 811–818 CAS.
  353. B. W. Lee, S. W. Chun, S. H. Kim, Y. Lee, E. S. Kang, B. S. Cha and H. C. Lee, Toxicol. Appl. Pharmacol., 2011, 252, 47–54 CrossRef CAS PubMed.
  354. H. H. Lee, S. A. Park, I. Almazari, E. H. Kim, H. K. Na and Y. J. Surh, Arch. Biochem. Biophys., 2010, 501, 142–150 CrossRef CAS PubMed.
  355. Y. Son, S. J. Byun and H.-O. Pae, Amino Acids, 2013, 1–9 Search PubMed.
  356. R. Vari, M. D'Archivio, C. Filesi, S. Carotenuto, B. Scazzocchio, C. Santangelo, C. Giovannini and R. Masella, J. Nutr. Biochem., 2011, 22, 409–417 CrossRef CAS PubMed.
  357. E. J. Park, J. H. Lim, S. I. Nam, J. W. Park and T. K. Kwon, Biochimie, 2010, 92, 110–115 CrossRef CAS PubMed.
  358. K. A. Kang, K. H. Lee, J. W. Park, N. H. Lee, H. K. Na, Y. J. Surh, H. J. You, M. H. Chung and J. W. Hyun, FEBS Lett., 2007, 581, 2000–2008 CrossRef CAS PubMed.
  359. K. C. Kim, K. A. Kang, R. Zhang, M. J. Piao, G. Y. Kim, M. Y. Kang, S. J. Lee, N. H. Lee, Y. J. Surh and J. W. Hyun, Int. J. Biochem. Cell Biol., 2010, 42, 297–305 CrossRef CAS PubMed.
  360. X. Cao, H. Xiao, Y. Zhang, L. Zou, Y. Chu and X. Chu, Brain Res., 2010, 1347, 142–148 CrossRef CAS PubMed.
  361. Y. P. Hwang, H. J. Yun, H. K. Chun, Y. C. Chung, H. K. Kim, M. H. Jeong, T. R. Yoon and H. G. Jeong, Chem.-Biol. Interact., 2009, 181, 366–376 CrossRef CAS PubMed.
  362. Y. P. Hwang and H. G. Jeong, Toxicol. Appl. Pharmacol., 2010, 242, 18–28 CrossRef CAS PubMed.
  363. S. Tao, Y. Zheng, A. Lau, M. C. Jaramillo, B. T. Chau, R. C. Lantz, P. K. Wong, G. T. Wondrak and D. D. Zhang, Antioxid. Redox Signaling, 2013, 19, 1647–1661 CrossRef CAS PubMed.
  364. H. S. Zhang and S. Q. Wang, Biochem. Pharmacol., 2007, 73, 1358–1366 CrossRef CAS PubMed.
  365. S. Sasaki, T. Tozawa, R. M. Van Wagoner, C. M. Ireland, M. K. Harper and T. Satoh, Biochem. Biophys. Res. Commun., 2011, 415, 6–10 CrossRef CAS PubMed.
  366. T. G. Son, S. Camandola, T. V. Arumugam, R. G. Cutler, R. S. Telljohann, M. R. Mughal, T. A. Moore, W. Luo, Q. S. Yu, D. A. Johnson, J. A. Johnson, N. H. Greig and M. P. Mattson, J. Neurochem., 2010, 112, 1316–1326 CrossRef CAS PubMed.
  367. Y.-M. Lee, Q. Auh, D.-W. Lee, J.-Y. Kim, H.-J. Jung, S.-H. Lee and E.-C. Kim, BioMed Res. Int., 2013, 210604 Search PubMed.
  368. S. M. Yang, S. M. Ka, K. F. Hua, T. H. Wu, Y. P. Chuang, Y. W. Lin, F. L. Yang, S. H. Wu, S. S. Yang, S. H. Lin, J. M. Chang and A. Chen, Free Radical Biol. Med., 2013, 61C, 285–297 CrossRef PubMed.
  369. P. Y. Tsai, S. M. Ka, T. K. Chao, J. M. Chang, S. H. Lin, C. Y. Li, M. T. Kuo, P. Chen and A. Chen, Free Radical Biol. Med., 2011, 50, 1503–1516 CrossRef CAS PubMed.
  370. J. W. Fahey, A. T. Zalcmann and P. Talalay, Phytochemistry, 2001, 56, 5–51 CrossRef CAS.
  371. T. A. Shapiro, J. W. Fahey, K. L. Wade, K. K. Stephenson and P. Talalay, Cancer Epidemiol., Biomarkers Prev., 2001, 10, 501–508 CAS.
  372. J. D. Brooks and V. Paton, Prostate Cancer Prostatic Dis., 1999, 2, S8 Search PubMed.
  373. R. Hu, V. Hebbar, B. R. Kim, C. Chen, B. Winnik, B. Buckley, P. Soteropoulos, P. Tolias, R. P. Hart and A. N. Kong, J. Pharmacol. Exp. Ther., 2004, 310, 263–271 CrossRef CAS PubMed.
  374. Z. Q. Jiang, C. Chen, B. Yang, V. Hebbar and A. N. Kong, Life Sci., 2003, 72, 2243–2253 CrossRef CAS.
  375. G. P. Basten, Y. Bao and G. Williamson, Carcinogenesis, 2002, 23, 1399–1404 CrossRef CAS PubMed.
  376. S. B. Jones and J. D. Brooks, BMC Cancer, 2006, 6, 62 CrossRef PubMed.
  377. A. T. Dinkova-Kostova, J. W. Fahey, K. L. Wade, S. N. Jenkins, T. A. Shapiro, E. J. Fuchs, M. L. Kerns and P. Talalay, Cancer Epidemiol., Biomarkers Prev., 2007, 16, 847–851 CAS.
  378. M. A. Riedl, A. Saxon and D. Diaz-Sanchez, Clin. Immunol., 2009, 130, 244–251 CrossRef CAS PubMed.
  379. Y. S. Keum, E. D. Owuor, B. R. Kim, R. Hu and A. N. Kong, Pharm. Res., 2003, 20, 1351–1356 CrossRef CAS.
  380. C. Xu, X. Yuan, Z. Pan, G. Shen, J. H. Kim, S. Yu, T. O. Khor, W. Li, J. Ma and A. N. Kong, Mol. Cancer Ther., 2006, 5, 1918–1926 CrossRef CAS PubMed.
  381. F. Hong, M. L. Freeman and D. C. Liebler, Chem. Res. Toxicol., 2005, 18, 1917–1926 CrossRef CAS PubMed.
  382. T. A. Shapiro, J. W. Fahey, A. T. Dinkova-Kostova, W. D. Holtzclaw, K. K. Stephenson, K. L. Wade, L. Ye and P. Talalay, Nutr. Cancer, 2006, 55, 53–62 CrossRef CAS PubMed.
  383. T. A. Shapiro, J. W. Fahey, K. L. Wade, K. K. Stephenson and P. Talalay, Cancer Epidemiol., Biomarkers Prev., 1998, 7, 1091–1100 CAS.
  384. M. K. Kwak, P. A. Egner, P. M. Dolan, M. Ramos-Gomez, J. D. Groopman, K. Itoh, M. Yamamoto and T. W. Kensler, Mutat. Res., 2001, 480–481, 305–315 CrossRef CAS.
  385. Z. Cao, D. Hardej, L. D. Trombetta, M. A. Trush and Y. Li, Atherosclerosis, 2003, 166, 291–301 CrossRef CAS.
  386. X. Peng and Y. Li, Pharmacol. Res., 2002, 45, 491–497 CrossRef CAS.
  387. M. K. Kwak, K. Itoh, M. Yamamoto and T. W. Kensler, Mol. Cell. Biol., 2002, 22, 2883–2892 CrossRef CAS.
  388. M. K. Kwak, N. Wakabayashi, K. Itoh, H. Motohashi, M. Yamamoto and T. W. Kensler, J. Biol. Chem., 2003, 278, 8135–8145 CrossRef CAS PubMed.
  389. Z. Jia, H. Zhu, M. A. Trush, H. P. Misra and Y. Li, Mol. Cell. Biochem., 2008, 307, 185–191 CrossRef CAS PubMed.
  390. P. A. Egner, T. W. Kensler, T. Prestera, P. Talalay, A. H. Libby, H. H. Joyner and T. J. Curphey, Carcinogenesis, 1994, 15, 177–181 CrossRef CAS PubMed.
  391. S. Manandhar, J. M. Cho, J. A. Kim, T. W. Kensler and M. K. Kwak, Eur. J. Pharmacol., 2007, 577, 17–27 CrossRef CAS PubMed.
  392. C. C. Wu, L. Y. Sheen, H. W. Chen, S. J. Tsai and C. K. Lii, Food Chem. Toxicol., 2001, 39, 563–569 CrossRef CAS.
  393. R. A. Lubet, R. Yao, C. J. Grubbs, M. You and Y. Wang, Chem.-Biol. Interact., 2009, 182, 22–28 CrossRef CAS PubMed.
  394. T. Ariga and T. Seki, BioFactors, 2006, 26, 93–103 CrossRef CAS.
  395. H. Y. Kay, J. Won Yang, T. H. Kim, Y. Lee da, B. Kang, J. H. Ryu, R. Jeon and S. G. Kim, J. Nutr., 2010, 140, 1211–1219 CrossRef CAS PubMed.
  396. C. Chen, D. Pung, V. Leong, V. Hebbar, G. Shen, S. Nair, W. Li and A. N. Kong, Free Radical Biol. Med., 2004, 37, 1578–1590 CrossRef CAS PubMed.
  397. C. D. Fisher, L. M. Augustine, J. M. Maher, D. M. Nelson, A. L. Slitt, C. D. Klaassen, L. D. Lehman-McKeeman and N. J. Cherrington, Drug Metab. Dispos., 2007, 35, 995–1000 CrossRef CAS PubMed.
  398. P. Gong, B. Hu and A. I. Cederbaum, Arch. Biochem. Biophys., 2004, 432, 252–260 CrossRef CAS PubMed.
  399. Y. Morimitsu, Y. Nakagawa, K. Hayashi, H. Fujii, T. Kumagai, Y. Nakamura, T. Osawa, F. Horio, K. Itoh, K. Iida, M. Yamamoto and K. Uchida, J. Biol. Chem., 2002, 277, 3456–3463 CrossRef CAS PubMed.
  400. M. O. Kelleher, M. McMahon, I. M. Eggleston, M. J. Dixon, K. Taguchi, M. Yamamoto and J. D. Hayes, Carcinogenesis, 2009, 30, 1754–1762 CrossRef CAS PubMed.
  401. C. L. Liu, Y. T. Chiu and M. L. Hu, J. Agric. Food Chem., 2011, 59, 11344–11351 CrossRef CAS PubMed.
  402. C. Gerhauser, K. Klimo, W. Hummer, J. Holzer, A. Petermann, A. Garreta-Rufas, F. D. Bohmer and P. Schreier, Mol. Nutr. Food Res., 2009, 53, 1237–1244 Search PubMed.
  403. S. Gradelet, P. Astorg, J. Leclerc, J. Chevalier, M. F. Vernevaut and M. H. Siess, Xenobiotica, 1996, 26, 49–63 CrossRef CAS.
  404. V. Breinholt, S. T. Lauridsen, B. Daneshvar and J. Jakobsen, Cancer Lett., 2000, 154, 201–210 CrossRef CAS.
  405. A. Ben-Dor, M. Steiner, L. Gheber, M. Danilenko, N. Dubi, K. Linnewiel, A. Zick, Y. Sharoni and J. Levy, Mol. Cancer Ther., 2005, 4, 177–186 CAS.
  406. K. Linnewiel, H. Ernst, C. Caris-Veyrat, A. Ben-Dor, A. Kampf, H. Salman, M. Danilenko, J. Levy and Y. Sharoni, Free Radical Biol. Med., 2009, 47, 659–667 CrossRef CAS PubMed.
  407. A. R. Smith, S. V. Shenvi, M. Widlansky, J. H. Suh and T. M. Hagen, Curr. Med. Chem., 2004, 11, 1135–1146 CrossRef CAS.
  408. S. S. Shi, R. M. Day, A. D. Halpner, J. B. Blumberg and Y. J. Suzuki, Antioxid. Redox Signaling, 1999, 1, 123–128 CrossRef CAS PubMed.
  409. D. Konrad, R. Somwar, G. Sweeney, K. Yaworsky, M. Hayashi, T. Ramlal and A. Klip, Diabetes, 2001, 50, 1464–1471 CrossRef CAS.
  410. W. J. Zhang, H. Wei, T. Hagen and B. Frei, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 4077–4082 CrossRef CAS PubMed.
  411. R. M. Ogborne, S. A. Rushworth and M. A. O'Connell, Arterioscler., Thromb., Vasc. Biol., 2005, 25, 2100–2105 CrossRef CAS PubMed.
  412. H. H. Chen, Y. T. Chen, Y. W. Huang, H. J. Tsai and C. C. Kuo, Free Radical Biol. Med., 2012, 52, 1054–1066 CrossRef CAS PubMed.
  413. B. H. Lee, W. H. Hsu, Y. Y. Chang, H. F. Kuo, Y. W. Hsu and T. M. Pan, Free Radical Biol. Med., 2012, 53, 2008–2016 CrossRef CAS PubMed.
  414. K. M. Lee, K. Kang, S. B. Lee and C. W. Nho, Cancer Lett., 2013, 330, 225–232 CrossRef CAS PubMed.
  415. T. Ohnuma, T. Komatsu, S. Nakayama, T. Nishiyama, K. Ogura and A. Hiratsuka, Arch. Biochem. Biophys., 2009, 488, 34–41 CrossRef CAS PubMed.
  416. T. Ohnuma, S. Nakayama, E. Anan, T. Nishiyama, K. Ogura and A. Hiratsuka, Toxicol. Appl. Pharmacol., 2010, 244, 27–36 CrossRef CAS PubMed.
  417. B. H. Lee, W. H. Hsu, Y. W. Hsu and T. M. Pan, Free Radical Biol. Med., 2013, 60, 7–16 CrossRef CAS PubMed.
  418. B. H. Lee, W. H. Hsu, T. Huang, Y. Y. Chang, Y. W. Hsu and T. M. Pan, J. Agric. Food Chem., 2013, 61, 1288–1298 CrossRef CAS PubMed.
  419. P. Y. Chiu, N. Chen, P. K. Leong, H. Y. Leung and K. M. Ko, Mol. Cell. Biochem., 2011, 350, 237–250 CrossRef CAS PubMed.
  420. G. S. Jeong, H. O. Pae, S. O. Jeong, Y. C. Kim, T. O. Kwon, H. S. Lee, N. S. Kim, S. D. Park and H. T. Chung, Eur. J. Pharmacol., 2007, 565, 37–44 CrossRef CAS PubMed.
  421. W. D. Kim, Y. W. Kim, I. J. Cho, C. H. Lee and S. G. Kim, J. Cell Sci., 2012, 125, 1284–1295 CrossRef CAS PubMed.
  422. W. Zhou, S. C. Lo, J. H. Liu, M. Hannink and D. B. Lubahn, Mol. Cell. Endocrinol., 2007, 278, 52–62 CrossRef CAS PubMed.
  423. W. Li, H. Liu, J. S. Zhou, J. F. Cao, X. B. Zhou, A. M. Choi, Z. H. Chen and H. H. Shen, J. Biol. Chem., 2012, 287, 20922–20930 CrossRef CAS PubMed.
  424. M. Salazar, A. I. Rojo, D. Velasco, R. M. de Sagarra and A. Cuadrado, J. Biol. Chem., 2006, 281, 14841–14851 CrossRef CAS PubMed.
  425. A. K. Jain and A. K. Jaiswal, J. Biol. Chem., 2007, 282, 16502–16510 CrossRef CAS PubMed.
  426. A. K. Jain and A. K. Jaiswal, J. Biol. Chem., 2006, 281, 12132–12142 CrossRef CAS PubMed.
  427. S. Dhakshinamoorthy, A. K. Jain, D. A. Bloom and A. K. Jaiswal, J. Biol. Chem., 2005, 280, 16891–16900 CrossRef CAS PubMed.
  428. H. Wang, K. Liu, M. Geng, P. Gao, X. Wu, Y. Hai, Y. Li, L. Luo, J. D. Hayes, X. J. Wang and X. Tang, Cancer Res., 2013, 73, 3097–3108 CrossRef CAS PubMed.
  429. N. Wakabayashi, K. Itoh, J. Wakabayashi, H. Motohashi, S. Noda, S. Takahashi, S. Imakado, T. Kotsuji, F. Otsuka, D. R. Roop, T. Harada, J. D. Engel and M. Yamamoto, Nat. Genet., 2003, 35, 238–245 CrossRef CAS PubMed.
  430. K. Taguchi, J. M. Maher, T. Suzuki, Y. Kawatani, H. Motohashi and M. Yamamoto, Mol. Cell. Biol., 2010, 30, 3016–3026 CrossRef CAS PubMed.
  431. K. Taguchi, H. Motohashi and M. Yamamoto, Genes Cells, 2011, 16, 123–140 CrossRef CAS PubMed.
  432. S. Homma, Y. Ishii, Y. Morishima, T. Yamadori, Y. Matsuno, N. Haraguchi, N. Kikuchi, H. Satoh, T. Sakamoto, N. Hizawa, K. Itoh and M. Yamamoto, Clin. Cancer Res., 2009, 15, 3423–3432 CrossRef CAS PubMed.
  433. B. Barajas, N. Che, F. Yin, A. Rowshanrad, L. D. Orozco, K. W. Gong, X. Wang, L. W. Castellani, K. Reue, A. J. Lusis and J. A. Araujo, Arterioscler., Thromb., Vasc. Biol., 2011, 31, 58–66 CrossRef CAS PubMed.
  434. S. Freigang, F. Ampenberger, G. Spohn, S. Heer, A. T. Shamshiev, J. Kisielow, M. Hersberger, M. Yamamoto, M. F. Bachmann and M. Kopf, Eur. J. Immunol., 2011, 41, 2040–2051 CrossRef CAS PubMed.
  435. N. Harada, K. Ito, T. Hosoya, J. Mimura, A. Maruyama, N. Noguchi, K. I. Yagami, N. Morito, S. Takahashi, J. M. Maher, M. Yamamoto and K. Itoh, Free Radical Biol. Med., 2012, 53, 2256–2262 CrossRef CAS PubMed.
  436. A. Singh, S. Boldin-Adamsky, R. K. Thimmulappa, S. K. Rath, H. Ashush, J. Coulter, A. Blackford, S. N. Goodman, F. Bunz, W. H. Watson, E. Gabrielson, E. Feinstein and S. Biswal, Cancer Res., 2008, 68, 7975–7984 CrossRef CAS PubMed.
  437. A. M. Gao, Z. P. Ke, J. N. Wang, J. Y. Yang, S. Y. Chen and H. Chen, Carcinogenesis, 2013, 34, 1806–1814 CrossRef CAS PubMed.
  438. T. Tarumoto, T. Nagai, K. Ohmine, T. Miyoshi, M. Nakamura, T. Kondo, K. Mitsugi, S. Nakano, K. Muroi, N. Komatsu and K. Ozawa, Exp. Hematol., 2004, 32, 375–381 CrossRef CAS PubMed.
  439. X. J. Wang, J. D. Hayes, C. J. Henderson and C. R. Wolf, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 19589–19594 CrossRef CAS PubMed.
  440. C. Boesch-Saadatmandi, A. E. Wagner, A. C. Graeser, C. Hundhausen, S. Wolffram and G. Rimbach, J. Anim. Physiol. Anim. Nutr., 2009, 93, 547–554 CrossRef CAS PubMed.
  441. A. Arlt, S. Sebens, S. Krebs, C. Geismann, M. Grossmann, M. L. Kruse, S. Schreiber and H. Schäfer, Oncogene, 2012, 32, 4825–4835 CrossRef PubMed.

This journal is © The Royal Society of Chemistry 2014