2014 International year of crystallography celebration: North America

Christer B. Aakeröy a and Tomislav Friščić b
aDepartment of Chemistry, Kansas State University, 213 CBC Building, Manhattan, KS 66506-0401, USA. E-mail: Aakeroy@ksu.edu
bDepartment of Chemistry, McGill University, 801 Sherbrooke St W., Montreal, Quebec H3A 0B8, Canada

CrystEngComm celebrates IYCr 2014!

Crystalline solids have been a source of human fascination and admiration since the very earliest times, and the first truly scientific endeavours included curiosity-driven investigations of crystals in order to understand their structures, properties and, occasionally, near-magical powers. Although some of these ventures resulted in erroneous, quickly forgotten speculations, crystallography has uncovered unique insights that have completely shaped the way we understand all of chemistry.1 For Haüy, the regularity of facets of a crystalline solid was a direct demonstration of its chemical composition and, importantly, of its ordered, periodic structure at the molecular level.2 This assumption was gloriously confirmed in the next century by von Laue through X-ray diffraction, leading to the birth of X-ray crystallography.3 It is widely accepted that no single scientific discipline has provided more data and unique information of such vital importance to biological and materials sciences alike than crystallography.

In this themed issue, celebrating the International Year of Crystallography, CrystEngComm pays tribute to crystal engineering, a highly interdisciplinary area at the interface of structural and materials sciences, which begun some fifty years ago through the application of X-ray crystallography to a problem of solid-state reactivity of cinnamic acids. Throughout the 1960s and 1970s extensive and systematic studies by Schmidt and co-workers successfully demonstrated how X-ray structure determination can help explain the solid-state [2 + 2] photochemical reactivity observed in different polymorphs and derivatives of cinnamic acid.4 This convincing, yet sometimes challenged5 demonstration of a direct correlation between the crystalline structure of an organic solid and its reactivity is often perceived as the real starting point in crystal engineering which, just like X-ray crystallography itself, has developed into a very dynamic and diverse research field supported by contributions from academic and industrial investigators from all around the world.

With X-ray crystallography as its most important tool, crystal engineering seeks to understand the structure of crystalline materials and molecular assembly in the solid state as a way to achieve its ultimate goal, the deliberate design of materials with tailored properties.6 Over the past 50 years, crystal engineering has embraced a plethora of experimental techniques and theoretical approaches including, but not limited to, solid-state NMR spectroscopy,7 terahertz spectroscopy,8 mechanochemical synthesis,9 atomic-scale microscopy10 and crystal structure prediction.11 Single crystal X-ray diffraction studies have facilitated extensive structural and material explorations of multi-component crystals,12 deliberately prepared through the application of designs based on supramolecular synthons,13 and aimed towards applications in photochemical synthesis,14 pharmaceutical science,15 supramolecular and biomolecular recognition studies16 or polymer synthesis.17 Crystal engineering has expanded from organic crystalline solids18 and now addresses the design of inorganic materials,19 solids based on mechanically interlocked molecules,20 node-and-linker design21 and assembly of functional metal–organic22 or covalent organic materials,23 crystallization and design of pharmaceutical solids24 and the synthesis of nano-sized organic25 and inorganic materials.26

Despite all the impressive progress that has been made to date, X-ray crystallography27 still retains an absolutely essential role in the further advancement of crystal engineering and the many possible applications thereof.

In this special issue of CrystEngComm, we want to illustrate and celebrate the role of X-ray crystallography in the broad context of crystal engineering through a collection of articles from authors in North America.

References

  1. K. Molčanov and V. Stilinović, Angew. Chem., Int. Ed., 2014, 53, 638–652 CrossRef PubMed.
  2. For a summary of Haüy’s work, see: L. P. Gratacap, Am. Mineral., 1918, 3, 100–125 Search PubMed.
  3. M. von Laue, Ber. Dtsch. Chem. Ges., 1917, 53, 214–216 Search PubMed and references cited therein.
  4. (a) M. D. Cohen, G. M. J. Schmidt and F. I. Sonntag, J. Chem. Soc., 1964, 2000–2013 RSC; (b) G. M. J. Schmidt, J. Chem. Soc., 1964, 2014–2021 RSC.
  5. G. Kaupp, CrystEngComm, 2003, 5, 117–133 RSC.
  6. G. M. J. Schmidt, Pure Appl. Chem., 1971, 27, 647 CrossRef CAS.
  7. (a) D. Bardelang, A. Brinkmann, C. I. Ratcliffe, J. A. Ripmeester, V. V. Terskikh and K. A. Udachin, CrystEngComm, 2014, 16, 3788–3795 RSC; (b) R. W. Schurko, Acc. Chem. Res., 2013, 46, 1985–1995 CrossRef CAS PubMed.
  8. E. P. J. Parrot, J. A. Zeitler, T. Friščić, M. Pepper, W. Jones, G. M. Day and L. F. Gladden, Cryst. Growth Des., 2009, 9, 1452–1460 Search PubMed.
  9. M. C. Etter, G. M. Frankenbach and J. Bernstein, Tetrahedron Lett., 1989, 30, 3617–3620 CrossRef CAS.
  10. (a) C. M. Perrin and J. A. Swift, CrystEngComm, 2012, 14, 1709–1715 RSC; (b) Y. Fang, P. Nguyen, O. Ivasenko, M. P. Aviles, E. Kebede, M. S. Askari, X. Ottenwaelder, U. Ziener, O. Siri and L. A. Cuccia, Chem. Commun., 2011, 47, 11255–11257 RSC.
  11. M. D. Eddleston, K. E. Hejczyk, E. G. Bithell, G. M. Day and W. Jones, Chem. – Eur. J., 2013, 19, 7874–7882 CrossRef CAS PubMed.
  12. C. B. Aakeröy, T. K. Wijethunga and J. Desper, CrystEngComm, 2014, 16, 28–31 RSC.
  13. A. Nangia and G. R. Desiraju, Supramolecular Synthons and Pattern Recognition, Top. Curr. Chem., 1998, 198, 57–95 CrossRef CAS.
  14. K. A. Wheeler, S. H. Malehorn and A. E. Egan, Chem. Commun., 2012, 48, 519–521 RSC.
  15. A. Delori, T. Friščić and W. Jones, CrystEngComm, 2012, 14, 2350–2362 RSC.
  16. (a) J. Viger-Gravel, S. Leclerc, I. Korobkov and D. L. Bryce, CrystEngComm, 2013, 15, 3168–3177 RSC; (b) M. A. Ziganshin, I. G. Efimova, V. V. Gorbatchuk, S. A. Ziganshina, A. P. Chuklanov, A. A. Bukharaev and D. V. Soldatov, J. Pept. Sci., 2012, 18, 209–214 CrossRef CAS PubMed.
  17. J. W. Lauher, F. W. Fowler and N. S. Goroff, Acc. Chem. Res., 2008, 41, 1215–1229 CrossRef CAS PubMed.
  18. (a) S. W. Robinson, D. A. Haynes and J. M. Rawson, CrystEngComm, 2013, 15, 10205–10211 RSC; (b) R. K. Singh, X. Hou, M. Overby, M. Schober and Q. Chu, CrystEngComm, 2012, 14, 6132–6135 RSC.
  19. C. M. Read, D. E. Bugaris and H.-C. zur Loye, Solid State Sci., 2013, 17, 40–45 CrossRef CAS PubMed.
  20. I. R. Fernando and G. Mezei, Inorg. Chem., 2012, 51, 3156–3160 CrossRef CAS PubMed.
  21. A. Schoedel, A. J. Cairns, Y. Belmabkhout, L. Wojtas, M. Mohamed, Z. Zhang, D. M. Proserpio, M. Eddaoudi and M. J. Zaworotko, Angew. Chem., Int. Ed., 2013, 52, 2902–2905 CrossRef CAS PubMed.
  22. G. A. Hogan, N. P. Rath and A. M. Beatty, Cryst. Growth Des., 2011, 11, 3740–3743 CAS.
  23. D. Beaudoin, T. Maris and J. D. Wuest, Nat. Chem., 2013, 5, 830–834 CrossRef CAS PubMed.
  24. (a) B. Van Eerdenbrugh, S. Raina, Y.-L. Hsieh, P. Augustijns and L. S. Taylor, Pharm. Res., 2014, 31, 969–982 CrossRef CAS PubMed; (b) A. Mattei, X. Mei, A.-F. Miller and T. Li, Cryst. Growth Des., 2013, 13, 3303–3307 CrossRef CAS.
  25. H. Kumari, A. V. Mossine, N. J. Schuster, C. L. Barnes, C. A. Deakyne and J. L. Atwood, CrystEngComm, 2014, 16, 3718–3721 RSC.
  26. (a) B. T. McGrail, L. S. Pianowski and P. C. Burns, J. Am. Chem. Soc., 2014, 136, 4797–4800 CrossRef CAS PubMed; (b) E. L. Gavey, Y. Beldjoudi, J. M. Rawson, T. C. Stamatos and M. Pilkington, Chem. Commun., 2014, 50, 3741–3743 RSC.
  27. W. H. Ojala, K. M. Lystad, T. L. Deal, J. E. Engebretson, J. M. Spude, B. Balidemaj and C. R. Ojala, Cryst. Growth Des., 2009, 9, 964–970 CAS.

This journal is © The Royal Society of Chemistry 2014