Issue 6, 2014

Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices

Abstract

Lateral flow devices are commonly used for many point-of-care (POC) applications in low-resource settings. However, they lack the sensitivity needed for many analytes relevant in the diagnosis of diseases. One approach to achieve higher sensitivity is signal amplification, which is commonly used in laboratory assays, but uses reagents that require refrigeration and inherently requires multiple assay steps not normally compatible with POC settings. Enzyme-based signal amplification, such as the one used in ELISA, could greatly improve the limit of detection if it were translated to a format compatible with POC requirements. A signal-amplified POC device not only requires the reagents to be stored in a stable form, but also requires automation of the multiple sequential steps of signal amplification protocols. Here, we describe a method for the long-term dry storage of ELISA reagents: horseradish peroxidase (HRP) conjugated antibody label and its colorimetric substrate diaminobenzidine (DAB). The HRP conjugate retained ∼80% enzymatic activity after dry storage at 45 °C for over 5 months. The DAB substrate was also stable at 45 °C and exhibited no detectable loss of activity over 3 months. These reagents were incorporated into a two-dimensional paper network (2DPN) device that automated the steps of ELISA for the detection of a malarial biomarker. These results demonstrate the potential of enzyme-based signal amplification for enhanced sensitivity in POC devices for low resource settings.

Graphical abstract: Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices

Supplementary files

Article information

Article type
Paper
Submitted
12 Dec 2013
Accepted
26 Jan 2014
First published
27 Jan 2014

Analyst, 2014,139, 1456-1462

Author version available

Long-term dry storage of an enzyme-based reagent system for ELISA in point-of-care devices

S. Ramachandran, E. Fu, B. Lutz and P. Yager, Analyst, 2014, 139, 1456 DOI: 10.1039/C3AN02296J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements