Issue 110, 2014

Enhancing the capacitive performance of a textile-based CNT supercapacitor

Abstract

A metal layer, used as a current collector layer for a textile-based supercapacitor (SC), was prepared on polyethylene terephthalate (PET) fabrics using wet chemical methods. By integrating this additional current collector layer into the SC structure, the carbon-nanotube (CNT)-based SC showed an improved capacitive performance. The specific capacitances of the CNT/Cu/PET SC and CNT/Au/PET SC were 4.312 × 10−3 F cm−2 and 3.683 × 10−3 F cm−2 respectively, about 60 times larger than that obtained from the CNT/PET SC without the metal collector layer. On the other hand, the energy densities of these CNT-based SCs with metal layers were found to be ∼50 fold increased as compared to the CNT/PET SC. Similarly, the power densities of these two SCs with current collector layers were two orders of magnitude larger than that of CNT/PET SC. High flexibility was also demonstrated in these two metal-layered SCs. For the durability measurement, the CNT/Au/PET SC showed a stable performance, with its specific capacitance maintained at about 89% of its initial value after 2500 charge–discharge cycles. However, the CNT/Cu/PET SC only showed a relatively short-term stability, as its specific capacitance dropped to 12% of its initial value after 2500 charge–discharge cycles. In order to further improve its capacitive performance, polyaniline (PANI) was deposited on the CNT/Au/PET SC surface using a cyclic voltammetric deposition method. A specific capacitance of 0.103 F cm−2, about 30 times larger than that of the CNT/Au/PET SC, was obtained in the PANI/CNT/Au/PET SC which also showed good flexibility as well as high stability performance, with only 11% drop after 2500 charge–discharge cycles. On the basis of our results, we believe that by integrating a thin current collector layer into the textile-based CNT SC, its specific capacitance is enhanced while its flexibility and durability can be maintained. This method allows us to make any non-conducting fabric into a SC and turn it into a portable and wearable energy storage device.

Graphical abstract: Enhancing the capacitive performance of a textile-based CNT supercapacitor

Article information

Article type
Paper
Submitted
15 Sep 2014
Accepted
11 Nov 2014
First published
14 Nov 2014

RSC Adv., 2014,4, 64890-64900

Author version available

Enhancing the capacitive performance of a textile-based CNT supercapacitor

W. C. Li, C. L. Mak, C. W. Kan and C. Y. Hui, RSC Adv., 2014, 4, 64890 DOI: 10.1039/C4RA10450A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements