Issue 33, 2013

Nanocomposites of bio-based hyperbranched polyurethane/funtionalized MWCNT as non-immunogenic, osteoconductive, biodegradable and biocompatible scaffolds in bone tissue engineering

Abstract

This study focused on the design of novel mechanically tough, biocompatible, osteoconductive and biodegradable scaffolds based on sunflower oil modified hyperbranched polyurethane (HBPU)/functionalized multi-walled carbon nanotube (f-MWCNT) nanocomposites (NCs), and the response of an animal model on their post-implantation. The NC was prepared by an in situ polymerization technique with different wt% of f-MWCNTs. The tensile strength of the NCs was enhanced to 36.98–47.6 MPa from 23.93 MPa (HBPU) and toughness from 12 767 to 18 427–19 440 due to the addition and efficient dispersion of the f-MWCNTs in the HBPU matrix. The post-60 days in vitro biodegraded NC retained sufficient strength (39 ± 1.65 MPa). The increase in wt% of f-MWCNTs had a significant effect on tailoring the physico-mechanical properties of the polymer. The hematological, histological and immunological indices of toxicity suggested the safety potential of the prepared systems within the tested animal model. Moreover, the cytokines (viz. IL-6 and TNF-α) detection, MTT assay and anti-hemolytic assay boosted the non-toxic behavior of the systems. The NC with interconnected pores size (200–330 μm) showed better proliferation and adherence of osteoblast (MG63) cells compared to the HBPU and the results were comparable with the control. Thus the findings confirmed the non-toxicity of f-MWCNTs in association with the polymer and thereby endorsed the NC as a potential biomimetic scaffold for bone tissue engineering.

Graphical abstract: Nanocomposites of bio-based hyperbranched polyurethane/funtionalized MWCNT as non-immunogenic, osteoconductive, biodegradable and biocompatible scaffolds in bone tissue engineering

Article information

Article type
Paper
Submitted
16 May 2013
Accepted
19 Jun 2013
First published
20 Jun 2013

J. Mater. Chem. B, 2013,1, 4115-4126

Nanocomposites of bio-based hyperbranched polyurethane/funtionalized MWCNT as non-immunogenic, osteoconductive, biodegradable and biocompatible scaffolds in bone tissue engineering

B. Das, P. Chattopadhyay, D. Mishra, T. K. Maiti, S. Maji, R. Narayan and N. Karak, J. Mater. Chem. B, 2013, 1, 4115 DOI: 10.1039/C3TB20693A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements