Issue 5, 2013

Multiwalled carbon nanotube-coated polyethylene terephthalate fibrous matrices for enhanced neuronal differentiation of mouse embryonic stem cells

Abstract

The next-generation of tissue scaffolds should incorporate 3-D structures with nanofeatures. Fibrous polyethylene terephthalate (PET) matrices have been widely studied as tissue engineering scaffolds, but their performance is limited by the lack of nanotopography. Carbon nanotubes can provide nanoscale structures similar to those present in natural extracellular matrices in vivo, but are difficult to use as 3-D scaffolds for tissue engineering. In this study, multiwalled carbon nanotubes (MWCNTs) were used to coat and provide nanofeatures on the surface of PET membranes and fibers. The effects of MWCNTs on the cellular functions of mouse embryonic stem (mES) cells cultured on the nanoengineered PET surface and 3-D scaffolds were investigated. In general, MWCNTs promoted cell adhesion and proliferation of mES cells while maintaining excellent cell viability in the growth medium. Neuronal differentiation was also significantly enhanced when cells were cultured in the differentiation medium. Different cell morphologies were observed in the presence of MWCNTs. Cells were stretched and well spread out in MWCNT-coated PET scaffolds, whereas cells were sporadically distributed in non-coated PET scaffolds. Furthermore, more filopodia were formed in MWCNT-coated PET matrices, suggesting increased interactions between scaffolds and cells. Also, neuronal cells differentiated from mES cells in the 3-D nanoengineered PET scaffolds formed extensive nerve networks around each fiber and neurite bridges between fibers. These findings suggest that MWCNTs can provide nanofeatures on PET fibrous matrices and enhance their performance as 3-D nanoengineered tissue engineering scaffolds.

Graphical abstract: Multiwalled carbon nanotube-coated polyethylene terephthalate fibrous matrices for enhanced neuronal differentiation of mouse embryonic stem cells

Supplementary files

Article information

Article type
Paper
Submitted
24 Sep 2012
Accepted
05 Nov 2012
First published
08 Nov 2012

J. Mater. Chem. B, 2013,1, 646-653

Multiwalled carbon nanotube-coated polyethylene terephthalate fibrous matrices for enhanced neuronal differentiation of mouse embryonic stem cells

R. Zang and S. Yang, J. Mater. Chem. B, 2013, 1, 646 DOI: 10.1039/C2TB00157H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements