Issue 4, 2013

A mechanistic study of protonreduction catalyzed by a pentapyridine cobalt complex: evidence for involvement of an anation-based pathway

Abstract

The pentapyridine cobalt complex [Co(PY5Me2)]2+ and its congeners have been shown to catalyze proton reduction to hydrogen in aqueous solution over a wide pH range using electrical or solar energy input. Here, we employ electrochemical and spectroscopic studies to examine the mechanisms of proton reduction by this parent complex under soluble, diffusion-limited conditions in acetonitrile with acetic acid as the proton donor. Two pathways for proton reduction are identified via cyclic voltammetry: one pathway occurring from an acetonitrile-bound CoII/I couple and the other pathway operating from an acetate-bound CoII/I couple. Kinetics studies support protonation of a CoI species as the rate-determining step for both processes, and additional electrochemical measurements further suggest that the onset of catalysis from the acetonitrile-bound CoII/I couple is highly affected by catalyst electronics. Taken together, this work not only establishes the CoPY5Me2 unit as a unique molecular platform that catalyzes the reduction of protons under soluble, diffusion-limited conditions in both aqueous and organic media, but also highlights the participation of anation processes that are likely relevant for a wide range of hydrogen-producing and related catalytic systems.

Graphical abstract: A mechanistic study of proton reduction catalyzed by a pentapyridine cobalt complex: evidence for involvement of an anation-based pathway

Supplementary files

Article information

Article type
Edge Article
Submitted
14 Dec 2012
Accepted
12 Feb 2013
First published
14 Feb 2013

Chem. Sci., 2013,4, 1578-1587

A mechanistic study of proton reduction catalyzed by a pentapyridine cobalt complex: evidence for involvement of an anation-based pathway

A. E. King, Y. Surendranath, N. A. Piro, J. P. Bigi, J. R. Long and C. J. Chang, Chem. Sci., 2013, 4, 1578 DOI: 10.1039/C3SC22239J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements