C–N bond formation via Cu-catalyzed cross-coupling with boronic acids leading to methyl carbazole-3-carboxylate: synthesis of carbazole alkaloids

Sk. Rasheedab, D. Nageswar Raoab, K. Ranjith Reddyab, S. Aravindab, Ram A. Vishwakarmab and Parthasarathi Das*ab
aAcademy of Scientific and Innovative Research (AcSIR), India
bMedicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR), Canal Road, Jammu-180001, India. E-mail: partha@iiim.ac.in; Fax: +91-191-2569019

Received 5th September 2013 , Accepted 22nd October 2013

First published on 23rd October 2013


Abstract

Copper promoted N-arylation of methyl 4-amino-3-iodobenzoate with boronic acids followed by Pd-catalyzed intramolecular C–H arylation provides an efficient route to methyl carbazole-3-carboxylate derivatives. This methodology was implemented in the synthesis of naturally occurring carbazole alkaloids clausine C, clausine H, clausine L, clausenalene, glycozoline, glycozolidine, glycozolidal and sansoakamine.


Introduction

Carbazoles have attracted considerable attention both in biological and material sciences as ubiquitous structural motif due to their medicinal,1 photophysical2 and optoelectronic application.3 Naturally occurring carbazomycin and ellipticine are well known for their antibacterial and anticancer properties respectively.4 Carbazole containing carveidilol and carazolol are used for the treatment of hypertension, ischemic heart disease and congestive heart failure.5 Carbazoles having –CO2Me group at 3-position represent a wide class of naturally occurring alkaloids (Fig. 1). Methyl carbazole-3-carboxylate (2a) and methyl 6-methoxycarbazole-3-carboxylate (2c) have been isolated from the roots of Clausena lansium.6
image file: c3ra44903c-f1.tif
Fig. 1 Naturally occurring methyl carbazole-3-carboxylate alkaloids.

Wu et al. reported the isolation of clausine C (2b),7a clausine H (2k),7b clausine M7c from the root bark of Clausena excavata. Clausine L (2j) and mukonidine both isolated by Wu and co-workers form the Chinese medicinal plant Clausena excavata.8 Recently, 2,6-dioxygenated sansoakamine (6) was isolated from the stem of Clausena excavata.9 In 2012 Laphookhieo et al. reported the isolation and biological activity of methyl carbazole-3-carboxylate (clausine C, clausine H, clausine L and mukonidine) and during the evaluation of antibacterial properties, mukonidine showed weak activity against MRSA (MIC 64 μg mL−1) and moderate activity against Gram-negative pathogen S. typhimurium with an MIC value of 32 μg mL−1.10 Further the anti-plasmodial activity (IC50 5.5–8.2 μg mL−1) of clausine H has been reported.11 For structure–activity relationships (SAR) study, the diversity in carbazole synthesis, especially the regiospecific installation of substituent's onto each of the nine positions of the carbazole skeleton, is challenging from synthetic point. Thus, the development of a mild, efficient and regio-controlled diversified method for the preparation of carbazole remains of high interest.

Transition metal-catalyzed N-arylation has been extensively studied over the past decade.12 The discovery of Pd- or Cu-catalyzed amination reactions pioneered by Buchwald and Hartwig is a hallmark reaction in this field.13,14 Despite these significant progresses in improvements of the reaction conditions, limitation exists in terms of functional group tolerability and high cost of palladium. In 1998 independent publications by Chan,15 Evans16 and Lam17 revolutionized the copper mediated heteroatom arylation reaction for the formation of N-aryl and O-aryl bonds using boronic acids. Later discovery by Collman18 has demonstrated that this reaction can be rendered catalytic for the arylation of imidazoles when [Cu(OH)·TMEDA]2Cl2 is used as a copper source. In the course of time the Chan–Lam type coupling became a useful synthetic tool due to the mild reaction conditions employed e.g. room temperature, weak base, ambient atmosphere (open-flask chemistry).19–21

Many different approaches for construction of carbazoles have been studied.22,23 Among them the approaches involving transition metal-catalyzed intramolecular C–C bond formation in diarylamines via C–H activation provide an excellent access to these important class of natural product.22 While the direct synthesis of carbazoles by cascade Buchwald–Hartwig N-arylation followed by C–H arylation using o-haloanilines has been reported.24 The main drawback of these reactions are use of expensive ligand, strong base and high reaction temperature. It is well precedented that oxidative insertion into a C–X bond is most facile for aryl iodides, so use of aryl iodides as coupling partner can give easy access to the desired arylated product.25

Keeping this in mind, we decided to use o-iodoanilines as substrate for cross-coupling reaction. Thus to find a mild reaction conditions for carbazole synthesis here we wish to report our study on Cu-catalyzed N-arylation of methyl 4-amino-3-iodobenzoate26 with boronic acid at room temperature under air followed by Pd-catalyzed intramolecular cyclization (Scheme 1). This protocol is general and culminated in the synthesis of several naturally occurring carbazoles including first total synthesis of sansoakamine.


image file: c3ra44903c-s1.tif
Scheme 1 Synthesis of methyl carbazole-3-carboxylate.

Results and discussion

For N-arylation of methyl 4-amino-3-iodobenzoate, we first use the protocol as reported by Chan11 and Evans16 for O-arylation of o-iodophenol. Our initial experiment starts with N-arylation of methyl 4-amino-3-iodobenzoate with phenylboronic acid by using Cu(OAc)2 (1 equiv.) and Et3N (2 equiv.) in DCM under air and room temperature. But this reaction ended with poor conversion (only 40%) of the starting material even after 48 h. Screening of different solvents, copper salts and base frustrated us with poor yield (see ESI for details of optimization protocol). Interestingly, the reaction also have only 40% conversion under catalytic (10 mol%) use of Cu(OAc)2. Careful observation on the progress of this reaction, revealed that the reaction proceed smoothly with 30 to 40% conversion in the first 5–6 h and then catalytic activity diminished over the next 20 h. J. C. Antilla and S. L. Buchwald27 have previously reported similar observations and they modified the conditions by using 2,6-lutidine as a base, myristic acid as an additive and toluene the preferred solvent. To our delight, when we subjected methyl 4-amino-3-iodobenzoate to the N-arylation conditions with phenylboronic acid by using catalytic Cu(OAc)2 (10 mol%), 2,6-lutidine in toluene under air the reaction proceed smoothly with 70% isolated yield (1a). In this reaction condition we used n-decanoic acid (20 mol%) as an additive. The use of molecular oxygen did not have any further improvement with the isolated yield. By using this optimized condition a series of N-arylated methyl 4-amino-3-iodobenzoate have been synthesized (Table 1). Methoxy substituted phenylboronic acids became our first choice as coupling partner so that naturally occurring carbazoles can be synthesized in subsequent cyclization process (Table 2). We were pleased to find that methoxy substitution of phenylboronic acids both at m- and p-position gave satisfactory coupling products (1b and 1c). The versatility of this reaction protocol has been demonstrated by further using different boronic acids as coupling partner (Table 1). Three more p-substituted boronic acids have been used to synthesize the corresponding N-arylated product (1d–f) in good yield. Phenylboronic acids containing electron withdrawing group (EWG) also resulted (1g–h) in satisfactory yield (65–66%) under this cross-coupling conditions. Bicyclic benzo[d][1,3]dioxol-5-ylboronic acid also gave clean coupled product with 72% isolated yield (1i). To find the generality and substrate scope of this methodology we further explore the N-arylation of 2-methoxy derivative of methyl 4-amino-3-iodobenzoate with different boronic acids. Phenyl boronic acid works satisfactorily to yield 1j in 70%. Both m- and p-substituted methoxyboronic acid gave the cross coupled product (1k–l) in 72% and 70% yield respectively.
Table 1 Cu-catalyzed coupling of methyl 4-amino-3-iodobenzoate with boronic acidsa

image file: c3ra44903c-u1.tif

a Methyl 4-amino-3-iodobenzoate (1 equiv.), boronic acids (1.5 equiv.), Cu(OAc)2 (10 mol%), n-decanoic acid (20 mol%), 2,6-lutidine (2 equiv.), toluene (5 mL), rt, air, 24 h.
image file: c3ra44903c-u2.tif image file: c3ra44903c-u3.tif image file: c3ra44903c-u4.tif
image file: c3ra44903c-u5.tif image file: c3ra44903c-u6.tif image file: c3ra44903c-u7.tif
image file: c3ra44903c-u8.tif image file: c3ra44903c-u9.tif image file: c3ra44903c-u10.tif
image file: c3ra44903c-u11.tif image file: c3ra44903c-u12.tif image file: c3ra44903c-u13.tif


Table 2 Pd-catalyzed C–H arylation of methyl 3-iodo-4-(phenylamino)benzoatea

image file: c3ra44903c-u14.tif

a Methyl-3-iodo-4-(phenylamino)benzoate (1 equiv.), Pd(OAc)2 (10 mol%), K2CO3 (2 equiv.), DMSO (5 mL), sealed tube, 130 °C.
image file: c3ra44903c-u15.tif image file: c3ra44903c-u16.tif image file: c3ra44903c-u17.tif
image file: c3ra44903c-u18.tif image file: c3ra44903c-u19.tif image file: c3ra44903c-u20.tif
image file: c3ra44903c-u21.tif image file: c3ra44903c-u22.tif image file: c3ra44903c-u23.tif
image file: c3ra44903c-u24.tif image file: c3ra44903c-u25.tif image file: c3ra44903c-u26.tif


After successful completion of the synthesis of diverse N-arylated product (1a–l), these 2-iodo diarylamine derivatives were used for intramolecular cyclization to obtain different carbazole alkaloids. To achieve the intramolecular C–H arylation of N-phenyl-2-iodoaniline derivatives, we first performed the reaction with methyl 3-iodo-4-(phenylamino)benzoate by using Pd(OAc)2 (10 mol%) as catalyst, K2CO3 as base and DMSO as solvent in sealed tube at 130 °C.28 To our expectation the reaction proceeded smoothly with complete conversion of starting material in 3 h to give methyl carbazole-3-carboxylate (2a)29 with 92% isolated yield (Table 2). This Pd-catalyzed reaction is very clean and works well without NH-protection. By following same reaction conditions naturally occurring carbazoles clausine C30a,b,e (2b), clausine L30c,d (2j), clausine H30a,f (2k) have been synthesized successfully. Clausine C can be converted to 7-hydroxy derivative, clausine M as reported by Knölker.30b Clausine H (2i) can be considered as crucial precursor for several 2,7-dioxygenated carbazoles particularly for clausine K and clausine O.30a Chloro and fluoro derivatives of N-arylated methyl 4-amino-3-iodobenzoate smoothly cyclized under this catalytic condition to give halogenated carbazoles (2g–h). Another naturally occurring carbazole methyl 6-methoxycarbazole-3-carboxylate (2c)31 synthesized in this process can be used as precursor for glycozoline (Scheme 2). 2,6-Dioxygenated carbazole (2l) and methylenedioxy carbazole (2i) synthesized by this route can be used as precursor for the synthesis of different carbazole alkaloids (Schemes 2 & 3).


image file: c3ra44903c-s2.tif
Scheme 2 Synthesis of glycozoline (3), glycozolidine (4), clausenaline (5): (a) LiAlH4 (2 equiv.), THF, 65 °C, 1 h.

image file: c3ra44903c-s3.tif
Scheme 3 Synthesis of sansoakamine (6), glycozolidal (7): (a) BBr3 (2 equiv.), CH2Cl2, −78 °C to −20 °C, 24 h, 76%; (b) DIBAL-H (1 equiv.), toluene, −78 °C, 1 h, 86%.

Two more new 6-oxygenated carbazoles 2d (85%) and 2e (80%) have also been synthesized by using this intramolecular C–H arylation process. Methyl 6-propyl-9H-carbazole-3-carboxylate (2f) has been synthesized under this Pd-catalyzed cyclization condition and the structure has been confirmed by X-ray crystal structure analysis (Fig. 2).32


image file: c3ra44903c-f2.tif
Fig. 2 Molecular structure of methyl 6-propyl-9H-carbazole-3-carbaxylate (2f) in crystal.

Methyl group at C-3 position remains one of the common structural features for many carbazole alkaloids. Thus to synthesize more naturally occurring carbazoles we pay our attention to the functional transformation of the 3-CO2Me group. We first consider methyl 6-methoxycarbazole-3-carboxylate (2c) and it is obvious that carbazole 2c can serve as precursor for glycozoline (3).33 Thus reduction of –CO2Me group of 2c with LiAlH4 gave glycozoline (3) in 75% yield (Scheme 2).34 By following the same reduction condition we successfully synthesized glycozolidine (4)35 from carbazole 2l in 65% yield and methylenedioxy carbazole clausenalene (5)36 form 2i in 72% yield. Synthesized glycozoline, glycozolidine and clausenalene have been fully characterized by spectroscopic data which are in good agreement with those reported for natural product.

With the readily available 2,6-dioxygenated carbazole 2l in hand we envisaged direct access to sansoakamine and glycozolidal. BBr3 mediated cleavage of both the methyl ether groups of 2l afforded sansoakamine (6) in 76% yield (Scheme 3). The spectroscopic data of the synthesized carbazole was in good agreement with the reported data.9 To the best of our knowledge this is the first report of total synthesis of sansoakamine. The methyl ester group of 2l was reduced directly into aldehyde group (Scheme 3) by DIBAL-H37 to produce another natural alkaloid glycozolidal (7), which was structurally confirmed by its spectroscopic data.35b

Conclusion

The Cu-catalyzed N-arylation and subsequent Pd-catalyzed intramolecular C–H arylation protocol has been successfully utilized in synthesizing various methyl carbazole-3-carboxylate derivatives. This two-step reaction sequence resulted in the direct synthesis of clausine C, clausine L and clausine H. This exercise also resulted in first total synthesis of 2,6-dioxygenated carbazole sansoakamine in four steps with 40% overall yield. Considering the availability of starting material and mild reaction conditions the procedure involved, we have demonstrated that this can be general methodology for synthesis of this family of compounds. Further studies including biological activity of these derivatives are presently being carried out in our laboratory.

Experimental

General information

Analytical thin layer chromatography (TLC) was performed on pre-coated silica gel plates (60 F254; MERCK). TLC plates were visualized by exposing UV light or by iodine vapours or immersion in ninhydrin followed by heating on hot plate. 1H and 13C NMR spectra were recorded with BRUKER 500 and 400 MHz NMR instruments. All the NMR spectra were processed in MestReNova. Mass spectra were recorded with VARIAN GC-MS instrument. HRMS spectra were recorded with LCMS-QTOF Module no. G6540 A (UHD) instrument. IR spectra were recorded on Jasco FT/IR-5300 spectrophotometer. Melting points were measured in open capillary tubes and are uncorrected. Unless otherwise indicated, chemicals and solvents were purchased from commercial suppliers.

General procedure for N-arylation of amine with boronic acids (1a–l)

Methyl 3-iodo-4-(phenylamino)benzoate (1a). To a solution of methyl 4-amino-3-iodobenzoate (100 mg, 0.36 mmol) in toluene (5 mL) was added phenylboronic acid (66 mg, 0.54 mmol), Cu(OAc)2 (6.5 mg, 0.036 mmol), n-decanoic acid (12.4 mg, 0.072 mmol) and 2,6-lutidine (77.1 mg, 0.72 mmol) and was stirred vigorously for 24 h at room temperature in open air. The reaction mixture was diluted with ethyl acetate (10 mL) and filtered through Whatman filter paper. The organic layer was washed with water (2 × 10 mL) and dried over Na2SO4. Then filtered and the solvent was removed under reduce pressure. The crude reaction mixture was purified by column chromatography on silica gel by using ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8) as eluent to give 1a (92 mg, 70%). Colourless gel; 1H NMR (400 MHz, CDCl3) δ 8.43 (s, 1H), 7.82 (dd, J = 8.6, 1.8 Hz, 1H), 7.38 (t, J = 7.9 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 7.16 (t, J = 8.1 Hz, 1H), 7.04 (d, J = 8.7 Hz, 1H), 6.32 (br s, 1H), 3.87 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.0, 148.1, 140.8, 138.4, 131.5, 129.5, 123.1, 121.1, 120.4, 114.5, 96.6, 51.8; MS (ESI): m/z = 354 [M + H]+; HRMS (ESI): m/z calcd for C14H12INO2 [M + H]+: 353.9986; found: 353.9988.

The following compounds 1b–l were prepared according to this procedure.

Methyl 3-iodo-4-(3-methoxyphenylamino)benzoate (1b). The reaction of methyl 4-amino-3-iodobenzoate (100 mg, 0.36 mmol), 3-methoxyphenylboronic acid (82 mg, 0.54 mmol), Cu(OAc)2 (6.5 mg, 0.036 mmol), n-decanoic acid (12.4 mg, 0.072 mmol) and 2,6-lutidine (77.1 mg, 0.72 mmol) in toluene (5 mL) gave 1b (102 mg, 74%); eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8); colourless gel; 1H NMR (400 MHz, CDCl3) δ 8.43 (s, 1H), 7.83 (dd, J = 8.6, 1.9 Hz, 1H), 7.26 (d, J = 8.8 Hz, 1H), 7.10 (d, J = 8.5 Hz, 1H), 6.80 (d, J = 8.5 Hz, 1H), 6.75 (s, 1H), 6.70 (d, J = 8.4, 1H) 6.30 (br s, 1H), 3.85 (s, 3H), 3.79 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.0, 157.5, 153.1, 148.8, 136.1, 131.5, 129.8, 129.7, 123.1, 120.1, 118.4, 113.8, 96.4, 55.0, 51.7; MS (ESI): m/z = 384 [M + H]+; HRMS (ESI): m/z calcd for C15H14INO3 [M + H]+: 384.0091; found: 384.0100.
Methyl 3-iodo-4-(4-methoxyphenylamino)benzoate (1c). The reaction of methyl 4-amino-3-iodobenzoate (100 mg, 0.36 mmol), 4-methoxyphenylboronic acid (82 mg, 0.54 mmol), Cu(OAc)2 (6.5 mg, 0.036 mmol), n-decanoic acid (12.4 mg, 0.072 mmol) and 2,6-lutidine (77.1 mg, 0.72 mmol) in toluene (5 mL) gave 1c (91 mg, 70%), eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8); colourless gel; 1H NMR (400 MHz, CDCl3) δ 8.41 (s, 1H), 7.78 (dd, J = 8.7, 1.4 Hz, 1H), 7.15 (d, J = 8.7 Hz, 2H), 6.94 (dd, J = 8.8, 1.3 Hz, 2H), 6.75 (dd, J = 8.7, 1.3 Hz, 1H), 6.22 (br s, 1H), 3.86 (s, 3H), 3.84 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.1, 156.5, 149.8, 138.4, 133.4, 131.5, 124.4, 119.9, 114.8, 113.2, 96.1, 55.5, 51.6; MS (ESI): m/z = 384 [M + H]+; HRMS (ESI): m/z calcd for C15H14INO3 [M + H]+: 384.0091; found: 384.0100.
Methyl 3-iodo-4-(4-phenoxyphenylamino)benzoate (1d). The reaction of methyl 4-amino-3-iodobenzoate (100 mg, 0.36 mmol), 4-phenoxyphenylboronic acid (115.5 mg, 0.54 mmol), Cu(OAc)2 (6.5 mg, 0.036 mmol), n-decanoic acid (12.4 mg, 0. 072 mmol) and 2,6-lutidine (77.1 mg, 0.72 mmol) in toluene (5 mL) gave 1d (105 mg, 65%). Eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8); colourless gel; 1H NMR (500 MHz, CDCl3) δ 8.42 (s, 1H), 7.82 (dd, J = 8.9, 1.9 Hz, 1H), 7.35 (m, 2H), 7.18 (dd, J = 8.6, 1.9 Hz, 2H), 7.12 (m, 1H), 7.03 (m, 3H), 7.00 (dd, J = 7.1, 2.1 Hz, 1H), 6.90 (d, J = 8.7 Hz, 1H), 6.26 (br s, 1H), 3.86 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.0, 160.7, 147.8, 142.2, 138.2, 135.2, 131.4, 130.2, 121.3, 115.0, 112.5, 108.3, 106.0, 89.2, 51.7; MS (ESI): m/z = 446 [M + H]+; HRMS (ESI): m/z calcd for C15H11NO4 [M + H]+: 446.0248; found: 446.0249.
Methyl 4-(4-butoxyphenylamino)-3-iodobenzoate (1e). The reaction of methyl 4-amino-3-iodobenzoate (100 mg, 0.36 mmol), 4-butoxyphenylboronic acid (105 mg, 0.54 mmol), Cu(OAc)2 (6.5 mg, 0.036 mmol), n-decanoic acid (12.4 mg, 0.072 mmol) and 2,6-lutidine (77.1 mg, 0.72 mmol) in toluene (5 mL) gave 1e (106 mg, 70%). Eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8); colourless gel; 1H NMR (500 MHz, CDCl3) δ 8.39 (s, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.13 (dd, J = 6.5, 2.1 Hz, 2H), 6.92 (dd, J = 8.4, 2.2 Hz, 2H), 6.74 (d, J = 8.6 Hz, 1H), 6.20 (br s, 1H), 3.97 (t, J = 6.4 Hz, 2H), 3.85 (s, 3H), 1.77 (dd, J = 14.3, 6.6 Hz, 2H), 1.51 (dd, J = 14.8, 7.4 Hz, 2H), 0.99 (t, J = 7.3 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 167.1, 156.2, 149.9, 138.4, 133.2, 131.5, 124.4, 119.9, 115.4, 113.2, 96.3, 68.1, 51.6, 29.2, 19.2, 13.7; MS (ESI): m/z = 426 [M + H]+; HRMS (ESI): m/z calcd for C18H20INO3 [M + H]+: 426.0561; found: 426.0554.
Methyl 3-iodo-4-(4-propylphenylamino)benzoate (1f). The reaction of methyl 4-amino-3-iodobenzoate (100 mg, 0.36 mmol), 4-n-propylphenylboronic acid (88 mg, 0.54 mmol), Cu(OAc)2 (6.5 mg, 0.036 mmol), n-decanoic acid (12.4 mg, 0.072 mmol) and 2,6-lutidine (77.1 mg, 0.72 mmol) in toluene (5 mL) gave 1f (90 mg, 68%). Eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8); colourless gel; 1H NMR (500 MHz, CDCl3) δ 8.41 (s, 1H), 7.80 (dd, J = 8.7, 1.3 Hz, 1H), 7.22 (dd, J = 8.7, 2.1 Hz, 2H), 7.12 (d, J = 8.0 Hz, 2H), 6.98 (t, J = 8.5 Hz, 1H), 6.28 (br s, 1H), 3.86 (s, 3H), 2.59 (t, J = 7.6 Hz, 2H), 1.65 (m, 2H), 0.95 (m, 3H); 13C NMR (125 MHz, CDCl3) δ 166.1, 147.7, 137.3, 137.0, 132.3, 130.5, 128.4, 120.1, 119.5, 113.0, 97.6, 50.7, 36.4, 23.6, 12.8; MS (ESI): m/z = 396 [M + H]+; HRMS (ESI): calcd for C17H18INO2 [M + H]+: 396.0455; found: 396.0446.
Methyl 4-(3-chlorophenylamino)-3-iodobenzoate (1g). The reaction of methyl 4-amino-3-iodobenzoate (100 mg, 0.36 mmol), 3-chlorophenylboronic acid (84 mg, 0.54 mmol), Cu(OAc)2 (6.5 mg, 0.036 mmol), n-decanoic acid (12.4 mg, 0.072 mmol) and 2,6-lutidine (77.1 mg, 0.72 mmol) in toluene (5 mL) gave 1g (92 mg, 66%). Eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8); colourless gel; 1H NMR (500 MHz, CDCl3) δ 8.44 (s, 1H), 7.86 (m, 1H), 7.28 (t, J = 1.3 Hz, 1H), 7.20 (d, J = 1.7 Hz, 1H), 7.11 (d, J = 1.1 Hz, 1H), 7.08 (dd, J = 6.9, 5.1 Hz, 2H), 6.29 (br s, 1H), 3.88 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 165.5, 147.2, 141.6, 141.3, 135.2, 131.0, 130.6, 124.2, 123.0, 121.6, 119.7, 113.0, 86.2, 52.0; MS (ESI): m/z = 388 [M + H]+; HRMS (ESI): m/z calcd for C14H11IClNO2 [M + H]+: 387.9596; found: 387.9587.
Methyl 4-(4-fluorophenylamino)-3-iodobenzoate (1h). The reaction of methyl 4-amino-3-iodobenzoate (100 mg, 0.36 mmol), 4-fluorophenylboronic acid (76 mg, 0.54 mmol), Cu(OAc)2 (6.5 mg, 0.036 mmol), n-decanoic acid (12.4 mg, 0.072 mmol) and 2,6-lutidine (77.1 mg, 0.72 mmol) in toluene (5 mL) gave 1g (88 mg, 65%). Eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8); colourless gel; 1H NMR (400 MHz, CDCl3) δ 8.42 (s, 1H), 7.80 (m, 1H), 7.19 (m, 2H), 7.08 (m, 2H), 6.84 (dd, J = 8.7, 2.1 Hz, 1H), 6.24 (br s, 1H), 3.86 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 165.6, 148.7, 141.2, 135.9, 130.9, 128.8, 125.5, 121.9, 116.5, 111.6, 84.7, 51.9; MS (ESI): m/z = 372 [M + H]+; HRMS (ESI): m/z calcd for C14H11IFNO2 [M + H]+: 371.9891; found: 371.9886.
Methyl-4-(benzo[d][1,3]dioxol-5-ylamino)-3-iodobenzoate (1i). The reaction of methyl 4-amino-3-iodobenzoate (100 mg, 0.36 mmol), benzo[d][1,3]dioxol-5-ylboronic acid (89 mg, 0.54 mmol), Cu(OAc)2 (6.5 mg, 0.036 mmol), n-decanoic acid (12.4 mg, 0.072 mmol) and 2,6-lutidine (77.1 mg, 0.72 mmol) in toluene (5 mL) gave 1i (105 mg, 72%). Eluent: ethyl acetate–hexanes (3[thin space (1/6-em)]:[thin space (1/6-em)]7); colourless gel; 1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 7.79 (dd, J = 8.6, 1.7 Hz, 1H), 6.81 (dd, J = 8.4, 7.2 Hz, 2H), 6.73 (d, J = 2.1 Hz, 1H), 6.68 (dd, J = 8.2, 1.8 Hz, 1H), 6.18 (br s, 1H), 6.00 (s, 2H), 3.86 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 179.9, 167.1, 149.4, 148.3, 144.3, 134.7, 131.5, 120.2, 115.7, 113.5, 108.6, 104.6, 101.3, 96.7, 51.7; MS (ESI): m/z = 398 [M + H]+; HRMS (ESI): m/z calcd for C15H12INO4 [M + H]+: 397.9884; found: 397.9883.
Methyl 5-iodo-2-methoxy-4-(phenylamino)benzoate (1j). The reaction of methyl 4-amino-5-iodo-2-methoxybenzoate (100 mg, 0.32 mmol), phenylboronic acid (58.5 mg, 0.48 mmol), Cu(OAc)2 (5.8 mg, 0.032 mmol), n-decanoic acid (11 mg, 0.064 mmol), 2,6-lutidine (68.5 mg, 0.64 mmol) in toluene (5 mL) gave 1j (97 mg, 70%). Eluent: ethyl acetate–hexanes (1[thin space (1/6-em)]:[thin space (1/6-em)]9); colourless gel; 1H NMR (400 MHz, CDCl3) δ 8.41 (s, 1H), 7.79 (dd, J = 8.5, 2.1 Hz, 1H), 7.17 (d, J = 8.4 Hz, 2H), 6.94 (dd, J = 8.3, 2.1 Hz, 2H), 6.76 (t, J = 7.8 Hz, 1H), 6.25 (br, 1H), 3.86 (s, 3H), 3.84 (s, 1H); 13C NMR (125 MHz, CDCl3) δ 167.8, 162.2, 157.0, 140.8, 137.9, 129.5, 123.8, 120.4, 114.5, 110.6, 96.1, 56.3, 51.8; MS (ESI): m/z = 384 [M + H]+; HRMS (ESI): m/z calcd for C15H14INO3 [M + H]+: 384.0091; found: 384.0100.
Methyl 5-iodo-2-methoxy-4-(3-methoxyphenylamino)benzoate (1k). The reaction of methyl 4-amino-5-iodo-2-methoxybenzoate (100 mg, 0.32 mmol), 3-methoxyphenylboronic acid (74 mg, 0.48 mmol), Cu(OAc)2 (5.8 mg, 0.032 mmol), n-decanoic acid (11 mg, 0.064 mmol) and 2,6-lutidine (68.5 mg, 0.64 mmol) in toluene (5 mL) gave 1k (105 mg, 72%). Eluent: ethyl acetate–hexanes (3[thin space (1/6-em)]:[thin space (1/6-em)]7); colourless gel; 1H NMR (400 MHz, CDCl3) δ 8.27 (s, 1H), 7.28 (dd, J = 8.6, 2.3 Hz, 2H), 6.82 (d, J = 7.9 Hz, 1H), 6.77 (t, J = 2.1 Hz, 1H), 6.72 (d, J = 2 Hz, 2H), 6.24 (br s, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 3.76 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 164.8, 161.4, 160.8, 148.6, 142.9, 141.3, 130.4, 114.3, 112.2, 110.1, 107.7, 97.2, 56.0, 55.3, 51.7; MS (ESI): m/z = 414 [M + H]+; HRMS (ESI): m/z calcd for C16H16INO4 [M + H]+: 414.0197; found: 414.0222.
Methyl 5-iodo-2-methoxy-4-(4-methoxyphenylamino)benzoate (1l). The reaction of methyl 4-amino-5-iodo-2-methoxybenzoate (500 mg, 1.62 mmol), 4-methoxyphenylboronic acid (371 mg, 2.44 mmol), Cu(OAc)2 (30 mg, 0.16 mmol), n-decanoic acid (56 mg, 0.32 mmol) and 2,6-lutidine (348 mg, 3.24 mmol) in toluene (20 mL) gave 1l (450 mg, 70%). Eluent: ethyl acetate–hexanes (1[thin space (1/6-em)]:[thin space (1/6-em)]9); colourless gel; 1H NMR (400 MHz, CDCl3) δ 8.25 (s, 1H), 7.17 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.7 Hz, 2H), 6.35 (s, 1H), 6.14 (br s, 1H), 3.84 (s, 6H), 3.69 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 164.8, 161.7, 157.4, 150.4, 142.8, 132.6, 130.9, 126.0, 116.0, 114.9, 95.8, 55.8, 55.5, 51.6; MS (ESI): m/z = 414 [M + H]+; HRMS (ESI): m/z calcd for C16H16INO4 [M + H]+: 414.0197; found: 414.0222.

General procedure for preparation of carbazoles (2a–l)

Methyl 9H-carbazole-3-carboxylate (2a). An oven-dried sealed tube was charged with, methyl 3-iodo-4-(phenylamino)benzoate 1a (80 mg, 0.220 mmol), K2CO3 (62.6 mg, 0.453 mmol), Pd(OAc)2 (5 mg, 0.022 mmol), DMSO (5 mL) and magnetic stir bar under argon atmosphere. The tube was sealed with Teflon cap and the reaction mixture was stirred at 130 °C for 3 h. The progress of the reaction was monitored by TLC and after completion the mixture was allowed to cool down to room temperature. The reaction mixture was diluted with H2O (3 mL) and was extracted with ethyl acetate (3 × 10 mL). The combined organic layer was dried over Na2SO4 and was evaporated under vacuum. The crude product was purified by column chromatography (ethyl acetate–hexanes; 2[thin space (1/6-em)]:[thin space (1/6-em)]3) to afford the corresponding carbazole 2a as white solid (47 mg, 92%). mp. 174–176 °C (ref. 6: 168–170 °C); IR (NaCl) ν (cm−1) 3344, 2947, 1692, 1591, 1522, 1497, 1448, 1434, 1327, 1312, 1250, 1172, 1110; 1H NMR (400 MHz, acetone-d6) δ 10.77 (br s, 1H), 8.82 (s, 1H), 8.26 (d, J = 7.8 Hz, 1H), 8.09 (dd, J = 8.6, 1.6 Hz, 1H), 7.58 (dd, J = 8.3, 3.5 Hz, 2H), 7.46 (m, 1H), 7.28 (m, 1H), 3.92 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.9, 142.3, 139.9, 127.4, 126.5, 123.3, 123.1, 122.9, 121.4, 120.6, 120.3, 110.9, 110.1, 51.9; MS (ESI): m/z = 226 [M + H]+; HRMS (ESI): m/z calcd for C14H11NO2 [M + H]+: 226.0863; found: 226.0859.

The following carbazoles 2b–l were prepared by following this procedure.

Clausine C (2b). The reaction of methyl 3-iodo-4-(3-methoxyphenylamino)benzoate 1b (100 mg, 0.26 mmol), Pd(OAc)2 (5.8 mg, 0.025 mmol), and K2CO3 (72.1 mg, 0.521 mmol) in DMSO (5 mL) at 130 °C for 4 h afforded 2b as yellow solid (58 mg, 88%): eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]3); mp 194–195 °C (ref. 30b: 195 °C); IR (NaCl) ν (cm−1) 3271, 2921, 2850, 1698, 1605, 1440, 1403, 1328, 1291, 1265, 1193, 1160, 1135, 1098; 1H NMR (500 MHz, CDCl3) δ 8.70 (s, 1H), 8.18 (br s, 1H), 8.12 (d, J = 8.6 Hz, 1H), 8.06 (dd, J = 8.1, 2.5 Hz, 1H), 7.56 (d, J = 8.6 Hz, 1H), 7.11 (d, J = 2.5 Hz, 1H), 6.92 (dd, J = 8.4, 2.1 Hz, 1H), 3.97 (s, 3H), 3.92 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.4, 160.6, 143.5, 142.7, 126.7, 124.2, 122.2, 122.0, 121.7, 117.4, 111.2, 109.8, 95.7, 55.2, 51.8; MS (ESI): m/z = 256 [M + H]+; HRMS (ESI): m/z calcd for C15H13NO3 [M + H]+: 256.0968; found: 256.0973.
Methyl 6-methoxy-9H-carbazole-3-carboxylate (2c). The reaction of methyl 3-iodo-4-(4-methoxyphenylamino)benzoate 1c (90 mg, 0.23 mmol), Pd(OAc)2 (5.2 mg, 0.023 mmol) and K2CO3 (64.9 mg, 0.47 mmol), in DMSO (5 mL) at 130 °C for 4 h afforded 2c as white solid (50 mg, 86%). Eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]3); mp 148–150 °C (ref. 6: 147–149 °C); IR (NaCl) ν (cm−1) 3281, 2921, 2851, 1699, 1631, 1606, 1441, 1401, 1384, 1329, 1292, 1191, 1161, 1099, 1033; 1H NMR (400 MHz, CDCl3) δ 8.70 (s, 1H), 8.18 (br s, 1H), 8.06 (dd, J = 8.5, 1.9 Hz, 1H), 7.98 (d, J = 8.5 Hz, 1H), 7.38 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 7.9 Hz, 1H), 6.89 (dd, J = 8.6, 2.1 Hz, 1H), 3.97 (s, 3H), 3.91 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.9, 154.5, 143.0, 134.7, 127.2, 123.8, 123.1, 122.9, 120.9, 115.9, 111.6, 110.2, 103.2, 55.9, 51.9; MS (ESI): m/z = 256 [M + H]+; HRMS (ESI): m/z calcd for C15H13NO3 [M + H]+: 256.0968; found: 256.0973.
Methyl 6-phenoxy-9H-carbazole-3-carboxylate (2d). The reaction of methyl 3-iodo-4-(4-phenoxyphenylamino)benzoate 1d (100 mg, 0.22 mmol), Pd(OAc)2 (5 mg, 0.022 mmol) and K2CO3 (62.1 mg, 0.45 mmol) in DMSO (5 mL) at 130 °C for 6 h afforded 2d as white solid (60 mg, 85%). Eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]3); mp 182–183 °C; IR (NaCl) ν (cm−1) 3340, 2919, 2850, 1687, 1633, 1608, 1588, 1489, 1460, 1437, 1308, 1282, 1257, 1219, 1168, 1119, 1095; 1H NMR (400 MHz, CDCl3): δ 8.71 (s, 1H), 8.30 (br s, 1H), 8.13 (dd, J = 8.6, 1.6 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.44 (d, J = 8.6 Hz, 2H), 7.34 (m, 2H), 7.22 (dd, J = 8.7, 2.3 Hz, 1H), 7.09 (dd, J = 10.6, 4.2 Hz, 1H), 7.02 (dd, J = 8.7, 1.0 Hz, 2H), 3.95 (s, 3H); 13C NMR (125 MHz, CD3OD): δ 168.2, 159.2, 150.28, 143.85, 137.3, 129.3, 126.9, 123.57, 122.42, 122.0, 120.1, 119.1, 117.2, 111.1, 110.7, 110.2, 50.9; MS (ESI): m/z = 316 [M − H]+; HRMS (ESI): m/z calcd for C20H14NO3 [M − H]+: 316.0979; found: 316.0967.
Methyl 6-butoxy-9H-carbazole-3-carboxylate (2e). The reaction of methyl 4-(4-butoxyphenylamino)-3-iodobenzoate 1e (100 mg, 0.23 mmol), Pd(OAc)2 (5.3 mg, 0.023 mmol), K2CO3 (65 mg, 0.470 mmol) in DMSO (5 mL) at 130 °C for 5 h afforded 2e as white solid (56 mg, 80%); eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]3); mp 123–125 °C; IR (NaCl) ν (cm−1) 3320, 2955, 2918, 2870, 1692, 1630, 1604, 1497, 1467, 1433, 1384, 1290,1273, 1196, 1175, 1117, 1097; 1H NMR (400 MHz, acetone-d6) δ 10.58 (br s, 1H), 8.82 (s, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.85 (d, J = 2.1 Hz, 1H), 7.55 (d, J = 8.6 Hz, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.11 (dd, J = 8.7, 2.3 Hz, 1H), 4.16 (t, J = 6.5 Hz, 2H), 3.92 (s, 3H), 1.83 (m, 2H), 1.57 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H). 13C NMR (125 MHz, CDCl3): δ 167.9, 153.9, 142.9, 134.6, 127.1, 123.7, 123.0, 122.8, 120.7, 116.5, 111.5, 110.2, 104.2, 68.6, 51.8, 31.4, 19.2, 13.8; MS (ESI): m/z = 320 [M + Na]+; HRMS (ESI): m/z calcd for C18H19NO3 [M + H]+: 298.1438; found: 298.1431.
Methyl 6-propyl-9H-carbazole-3-carboxylate (2f). The reaction of methyl 3-iodo-4-(4-propylphenylamino)benzoate 1f (80 mg, 0.20 mmol), Pd(OAc)2 (4.5 mg, 0.020 mmol) and K2CO3 (55.9 mg, 0.404 mmol) in DMSO (5 mL) at 130 °C for 5 h afforded 2f as white solid (47 mg, 88%); eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]3); mp 144–146 °C; IR (NaCl) ν (cm−1) 3298, 2959, 2922, 2852, 1697, 1632, 1607, 1466, 1430, 1384, 1320, 1281, 1261, 1193, 1161, 1131, 1093, 861, 803, 759, 632 cm−1; 1H NMR (400 MHz, CDCl3) δ 8.80 (s, 1H), 8.29 (br s, 1H), 8.10 (dd, J = 7.8, 1.9 Hz, 1H), 7.92 (s, 1H), 7.37 (dd, J = 8.9, 1.9 Hz, 2H), 7.26 (dd, J = 8.6, 2.9 Hz, 1H), 3.97 (s, 3H), 2.76 (t, J = 7.9 Hz, 2H), 1.73 (dd, J = 15.0, 7.5 Hz, 2H), 0.98 (dd, J = 7.7, 7.0 Hz, 3H); 13C NMR (125 MHz, CDCl3) δ 168.0, 142.6, 138.3, 134.7, 127.3, 127.1, 123.3, 123.0, 122.7, 120.9, 119.9, 110.5, 110.0, 51.9, 38.0, 25.1, 13.7; MS (ESI): m/z = 290 [M + Na]+; HRMS (ESI): m/z calcd for C17H17NO2 [M + H]+: 268.1332; found: 268.1333.
Methyl 7-chloro-9H-carbazole-3-carboxylate (2g). The reaction of methyl 4-(3-chlorophenylamino)-3-iodobenzoate 1g (80 mg, 0.20 mmol), Pd(OAc)2 (4.6 mg, 0.020 mmol) and K2CO3 (57 mg, 0.412 mmol) in DMSO (5 mL) at 130 °C for 5 h afforded 2g as white solid (40 mg, 75%). Eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]3); mp 224–226 °C; IR (NaCl) ν (cm−1) 3441, 2922, 2852, 1701, 1627, 1436, 1335, 1264, 1133, 1016, 912, 820; 1H NMR (400 MHz, acetone-d6) δ 10.89 (br s, 1H), 8.81 (s, 1H), 8.26 (d, J = 8.4 Hz, 1H), 8.10 (dd, J = 8.6, 1.6 Hz, 1H), 7.62 (d, J = 8.1 Hz, 1H), 7.60 (s, 1H), 7.27 (dd, J = 8.4, 1.9 Hz, 1H), 3.92 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 167.4, 142.7, 141.4, 128.4, 123.4, 123.4, 123.1, 123.0, 123.0, 122.7, 122.4, 118.2, 118.2, 111.0, 110.6, 110.5, 52.1; MS (ESI): m/z = 260 [M + H]+; HRMS (ESI): m/z calcd for C14H10ClNO2 [M + H]+: 260.0473; found: 260.0474.
Methyl 6-fluoro-9H-carbazole-3-carboxylate (2h). The reaction of methyl 4-(4-fluorophenylamino)-3-iodobenzoate 1h (80 mg, 0.21 mmol), Pd(OAc)2 (4.8 mg, 0.021 mmol) and K2CO3 (59.5 mg, 0.43 mmol) in DMSO (5 mL) at 130 °C for 5 h afforded 2h as white solid (39 mg, 75%). Eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]3); mp 196–199 °C; IR (NaCl) ν (cm−1) 3436, 2925, 2853, 1634, 1466, 1431, 1315, 1286, 1261, 1159, 1016, 768; 1H NMR (400 MHz, CDCl3) δ 8.76 (s, 1H), 8.32 (br s, 1H), 8.15 (dd, J = 8.6, 1.4 Hz, 1H), 7.77 (d, J = 8.6 Hz, 1H), 7.43 (d, J = 8.5 Hz, 1H), 7.38 (dd, J = 8.7, 4.1 Hz, 1H), 7.20 (m, 1H), 3.98 (s, 3H). 13C NMR (125 MHz, acetone-d6) δ 167.9, 159.4, 157.6, 144.5, 137.8, 128.2, 123.8, 121.8, 115.0, 114.7, 113.0, 111.7, 106.9, 52.0; MS (ESI): m/z = 244 [M + H]+; HRMS (ESI): m/z calcd for C14H10FNO2 [M + H]+: 244.0769; found: 244.0773.
Methyl 5H-[1,3]dioxolo[4,5-b]carbazole-8-carboxylate (2i). The reaction of methyl 4-(benzo[d][1,3]dioxol-5-ylamino)-3-iodobenzoate 1i (80 mg, 0.21 mmol), Pd(OAc)2 (4.8 mg, 0.021 mmol) and K2CO3 (69.6 mg, 0.503 mmol) in DMSO (5 mL) at 130 °C for 6 h afforded 2i as light yellow solid (60 mg, 87%); eluent: ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]3); mp 220–222 °C; IR (NaCl) ν (cm−1) 3341, 2923, 2853, 1708, 1601, 1521, 1501, 1485, 1433, 1280, 1233, 1173, 1107, 1037; 1H NMR (400 MHz, acetone-d6) δ 10.62 (br s, 1H), 8.68 (s, 1H), 7.96 (dd, J = 8.5, 1.6 Hz, 1H), 7.69 (s, 1H), 7.50 (d, J = 8.7 Hz, 1H), 7.06 (s, 1H), 6.05 (s, 2H), 3.90 (s, 3H). 13C NMR (125 MHz, acetone-d6) δ 168.0, 148.8, 143.8, 137.0, 129.0, 126.1, 124.0, 122.3, 121.5, 117.1, 111.2, 102.0, 100.3, 93.3, 51.9; MS (ESI): m/z = 270 [M + H]+; HRMS (ESI): calcd for C15H11NO4 [M + H]+: 270.0761; found: 270.0755.
Clausine L (2j). The reaction of methyl 5-iodo-2-methoxy-4-(phenylamino)benzoate 1j (80 mg, 0.21 mmol), Pd(OAc)2 (4.8 mg, 0.021 mmol) and K2CO3 (57.7 mg, 0.417 mmol) in DMSO (5 mL) at 130 °C for 4 h afforded 2j as colourless solid (45 mg, 87%). Eluent: ethyl acetate–hexanes (3[thin space (1/6-em)]:[thin space (1/6-em)]7); mp 171–172 °C (ref. 30c: 172–173 °C); IR (NaCl) ν (cm−1) 3325, 2923, 1704, 1635, 1618, 1588, 1492, 1469, 1433, 1384, 1346, 1296, 1246, 1199, 1156, 1116, 1081, 1027; 1H NMR δ (400 MHz, CDCl3) 8.60 (s, 1H), 8.27 (br s, 1H), 8.00 (d, J = 7.8 Hz, 1H), 7.39 (dd, J = 8.7, 2.7 Hz, 2H), 7.26 (d, J = 8.3 Hz, 1H), 6.93 (s, 1H), 3.98 (s, 3H), 3.95 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 167.9, 160.23, 144.81, 143.0, 127.2, 125.3, 123.8, 120.9, 119.9, 117.3, 113.7, 111.6, 94.4, 55.9, 51.9; MS (ESI): m/z = 256 [M + H]+; HRMS (ESI): calcd for C15H13NO3 [M + H]+: 256.0968; found: 256.0973.
Clausine H (2k). The reaction of methyl 5-iodo-2-methoxy-4-(3-methoxyphenylamino)benzoate 1k (80 mg, 0.20 mmol), Pd(OAc)2 (4.4 mg, 0.019 mmol) and K2CO3 (53.5 mg, 0.387 mmol) in DMSO (5 mL) at 130 °C for 5 h afforded 2k as white crystals (44 mg, 80%). Eluent: ethyl acetate–hexanes (3[thin space (1/6-em)]:[thin space (1/6-em)]7); mp 192–193 °C (ref. 30a: 191–192 °C); IR (NaCl) ν (cm−1) 3350, 2922, 2850, 1692, 1591, 1522, 1492, 1458, 1434, 1337, 1311, 1277, 1192, 1174, 1156, 1109, 1045 cm−1; 1H NMR (400 MHz, CDCl3) δ 8.48 (s, 1H), 8.21 (br s, 1H), 7.86 (d, J = 8.5 Hz, 1H), 7.12 (s, 1H), 6.90 (d, J = 2.6 Hz, 1H), 6.86 (dd, J = 8.5, 2.1 Hz, 1H), 3.96 (s, 3H), 3.94 (s, 3H), 3.89 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 167.6, 160.0, 158.8, 143.4, 141.2, 123.8, 120.5, 118.0, 116.8, 114.9, 108.5, 96.8, 95.6, 56.3, 55.6, 51.8; MS (ESI): m/z = 286 [M + H]+; HRMS (ESI) calcd for C16H15NO4 [M + H]+: 286.1072; found: 286.1081.
Methyl 2,6-dimethoxy-9H-carbazole-3-carboxylate (2l). The reaction of methyl 5-iodo-2-methoxy-4-(4-methoxyphenylamino) benzoate 1l (450 mg, 1.08 mmol), Pd(OAc)2 (24.4 mg, 0.109 mmol) and K2CO3 (301.1 mg, 2.178 mmol) in DMSO (20 mL) at 130 °C for 5 h afforded 2l as white crystals (240 mg, 78%). Eluent: ethyl acetate–hexanes (3[thin space (1/6-em)]:[thin space (1/6-em)]7); mp 165–167 °C; IR (NaCl) ν (cm−1) 3327, 2999, 2948, 2834, 1704, 1635, 1618, 1492, 1470, 1346, 1296, 1246, 1199, 1157, 1081; 1H NMR (400 MHz, acetone-d6) δ 10.33 (br s, 1H), 8.54 (s, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.40 (d, J = 8.4 Hz, 1H), 7.12 (s, 1H), 6.99 (dd, J = 8.7, 2.5 Hz, 1H), 3.87 (s, 3H), 3.83 (s, 3H), 3.75 (s, 3H); 13C NMR (125 MHz, acetone-d6) δ 167.4, 159.7, 155.4, 145.1, 135.9, 125.2, 117.0, 114.9, 113.2, 112.4, 112.3, 103.5, 94.7, 56.3, 56.1, 51.7; MS (ESI): m/z = 286 [M + H]+; HRMS (ESI): calcd for C16H15NO4 [M + H]+: 286.1072; found: 286.1081.
Glycozoline (3). A solution of methyl 6-methoxy-9H-carbazole-3-carboxylate 2c (40 mg, 0.16 mmol) in THF (3 mL) was added drop wise to a suspension of LiAlH4 (12.1 mg, 0. 32 mmol) in dry THF (4 mL) at 0 °C. The suspension was then allowed to warm to 65 °C and was stirred until the reaction was completed. The reaction mixture was quenched by methanol and ice cold water followed by the methanol was removed under reduced pressure in a rotary evaporator. The reaction mixture was diluted with ethyl acetate and washed with water (3 × 10 mL). The organic layer was dried over MgSO4 and evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel by using ethyl acetate–hexanes (3[thin space (1/6-em)]:[thin space (1/6-em)]7) to give glycozoline (3) in 75% yield (25 mg). Light yellow solid; mp180–182 °C (ref. 33b: 179–180 °C); IR (NaCl) ν (cm−1) 3404, 2922, 2851, 1742, 1585, 1495, 1461, 1437, 1331, 1295, 1254, 1209, 1172, 1143, 1032; 1H NMR (400 MHz, CDCl3) δ 8.21 (br s, 1H), 7.93 (s, 1H), 7.67 (s, 1H), 7.41 (d, J = 8.5 Hz, 1H), 7.35 (d, J = 8.1 Hz, 1H), 7 (d, J = 7.8 Hz, 1H), 7.08 (dd, J = 8.5, 1.2 Hz, 1H), 3.97 (s, 3H), 2.54 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 150.6, 133.3, 128.4, 127.2, 124.21, 123.5, 120.1, 119.5, 113.4, 112.6, 110.3, 99.7, 55.5, 23.6; LC-MS (ESI): m/z = 212 [M + H]+; HRMS (ESI): calcd for C14H13NO [M + H]+: 212.1070; found: 212.1083.
Glycozolidine (4). Following the same reaction procedure as reported for glycozoline (3) reaction of carbazole 2l (50 mg, 0.17 mmol) with LiAlH4 (13.3 mg, 0.35 mmol) in THF (5 mL) afforded glycozolidine 4 (21 mg, 65%). Eluent: ethyl acetate–hexanes (3[thin space (1/6-em)]:[thin space (1/6-em)]7); light yellow solid; mp164–166 °C (ref. 35a: 158–161 °C); IR (NaCl) ν (cm−1) 3404, 2922, 2851, 1742, 1585, 1461, 1437, 1384, 1331, 1295, 1254, 1209, 1172, 1032; 1H NMR (400 MHz, acetone-d6) δ 9.94 (br, 1H), 7.78 (s, 1H), 7.53 (d, J = 2.4 Hz, 1H), 7.32 (d, J = 8.7 Hz, 1H), 6.98 (s, 1H), 6.90 (dd, J = 8.7, 2.6 Hz, 1H), 3.89 (s, 3H), 3.86 (s, 3H), 2.30 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 157.5, 153.1, 141.3, 134.4, 123.4, 121.0, 118.6, 116.9, 112.5, 110.1, 102.3, 92.3, 56.0, 55.3, 14.1; MS (ESI): m/z = 242 [M + H]+; HRMS (ESI): calcd for C15H15NO2 [M + H]+: 242.1176; found: 242.1171.
Clausenalene (5). Following the same reaction procedure as reported for glycozoline (3) reaction of carbazole 2i (50 mg, 0.18 mmol) with LiAlH4 (14.1 mg, 0.37 mmol) in THF (4 mL) afforded clausenalene 5 (31 mg, 72%). Eluent: ethyl acetate–hexanes (3[thin space (1/6-em)]:[thin space (1/6-em)]7); white solid; mp 224–227 °C (ref. 36a: 224–225 °C); IR (NaCl) ν (cm−1) 3386, 2918, 2850, 1687, 1585, 1484, 1458, 1378, 1318, 1297, 1269, 1217, 1189, 1151, 1036; 1H NMR (400 MHz, acetone-d6) δ 10.04 (br s, 1H), 7.75 (s, 1H), 7.49 (s, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.09 (dd, J = 8.3, 1.2 Hz, 1H), 6.97 (s, 1H), 5.99 (s, 2H), 2.45 (s, 3H); 13C NMR (125 MHz, acetone-d6) δ 148.0, 142.9, 139.2, 136.7, 128.3, 126.1, 124.5, 119.8, 116.8, 111.3, 101.7, 99.8, 92.9, 21.5; LC-MS (ESI): m/z = 226 [M + H]+; HRMS (ESI): calcd for C14H11NO2 [M + H]+: 226.0863; found: 226.0859.
Sansoakamine (6). Boron tribromide (1 M solution in CH2Cl2, 0.34 mL, 0.34 mmol) was added at −78 °C to a solution of 2l (50 mg, 0.17 mmol) in CH2Cl2 (5 mL) under nitrogen atmosphere and the mixture was stirred at that temperature for 2 h. The reaction mixture was warmed to −20 °C and was stirred for another 20 h. The progress of the reaction was monitored by TLC and after completion the reaction mixture was quenched with saturated aqueous solution of NaHCO3 at 0 °C and diluted with ethyl acetate. The aqueous layer was extracted with ethyl acetate (2 × 10 mL). The combined organic layer was dried over anhydrous Na2SO4 and was evaporated under reduced pressure. The crude product was purified by silica gel column chromatography by using ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8) to give sansoakamine (6) in 76% (34 mg) yield. Light brown solid; mp 243–246 °C (ref. 9: 243.8–245.6 °C); IR (NaCl) ν (cm−1) 3338, 2923, 2853, 1660, 1597, 1436, 1383, 1265, 1162, 1089, 1042; 1H NMR (400 MHz, acetone-d6) δ 10.31 (br s, 1H), 8.53 (s, 1H), 7.51 (d, J = 2.2 Hz, 1H), 7.29 (d, J = 8.6 Hz, 1H), 6.93 (dd, J = 8.6, 2.3 Hz, 1H), 6.86 (s, 1H), 3.99 (s, 3H); 13C NMR (125 MHz, CDCl3) δ 171.6, 160.6, 152.2, 147.9, 135.2, 125.5, 122.1, 114.3, 112.6, 109.8, 107.8, 104.4, 95.2, 51.8; MS (ESI): m/z = 258 [M + H]+; HRMS (ESI) calcd for C14H11NO4 [M + H]+: 258.0761; found: 258.0762.
Glycozolidal (7). To a solution of 2l (50 mg, 0.17 mmol) in dry toluene (5 mL) was added a solution of DIBAL-H (1.0 M in THF, 0.17 mL, 0.17 mmol) at −78 °C under nitrogen atmosphere. The mixture was stirred at −78 °C for 1 h. The progress of the reaction was monitored by TLC. The resulting mixture was quenched with methanol (5 mL) followed by ice cold water (5 mL). The methanol was removed under reduced pressure and the reaction mixture was diluted with ethyl acetate. The organic layer was separated dried over Na2SO4 and was concentrated under vacuum. The crude reaction mixture was purified by column chromatography on silica gel by using by using ethyl acetate–hexanes (2[thin space (1/6-em)]:[thin space (1/6-em)]8) to afford glycozolidal (7) in 86% (37.8 mg) yield. Yellow solid; mp190–193 °C (ref. 35b: 188–193 °C); IR (NaCl) ν (cm−1) 3400, 2923, 2852, 1606, 1487, 1469, 1433, 1384, 1295, 1274, 1202, 1112; 1H NMR (400 MHz, acetone-d6) δ 10.49 (br s, 1H), 10.45 (s, 1H), 8.50 (s, 1H), 8.03 (d, J = 2.2 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.39 (dd, J = 8.7, 2.1 Hz, 1H), 7.12 (s, 1H), 4.02 (s, 3H), 3.91 (s, 3H); 13C NMR (125 MHz, acetone-d6) δ 189.7, 159.7, 155.4, 145.1, 135.9, 125.2, 121.1, 118.7, 117.0, 114.9, 112.3, 103.5, 94.7, 56.3, 56.1; MS (ESI): m/z = 256 [M + H]+; HRMS (ESI): calcd for C15H13NO3 [M + H]+: 256.0968; found: 256.0972.

Acknowledgements

Sk. R and K. R. thank CSIR for research fellowship. N. R. likes to thank UGC for research fellowship. CSIR, New Delhi (BSC 0108) is acknowledged for the financial support.

References

  1. (a) D. P. Chakraborty, The Alkaloids, ed. A. Bossi, Academic Press, New York, 1993, vol. 44, p. 257 Search PubMed; (b) H.-J. Knölker, Advances in Nitrogen Heterocycles, ed. C. J. Moody, JAI, Greenwich, 1995, vol. 1, p. 173 Search PubMed; (c) H.-J. Knölker and K. R. Reddy, in The Alkaloids, ed. G. A. Cordell, Academic Press, Amsterdam, 2008, vol. 65, p. 1 Search PubMed; (d) K. K. Gruner and H.-J. Knölker, in Heterocycles in Natural Product Synthesis, ed. K. C.Majumdar and S. K. Chattopadhyay, Wiley-VCH, Weinheim, Germany, 2011, p. 341 Search PubMed; (e) I. Bauer and H.-J. Knölker, Top. Curr. Chem., 2012, 309, 203 CrossRef CAS PubMed.
  2. (a) Y. Ooyama, S. Inoue, T. Nagano, K. Kushimoto, J. Ohshita, I. Imae, K. Komaguchi and Y. Harima, Angew. Chem., Int. Ed., 2011, 50, 7429 CrossRef CAS PubMed; (b) S.-I. Kato, S. Shimizu, H. Taguchi, A. Kobayashi, S. Tobita and Y. Nakamura, J. Org. Chem., 2012, 77, 3222 CrossRef CAS PubMed.
  3. (a) V. Vaitkeviciene, A. Kruzinauskiene, S. Grigalevicius, J. V. Grazulevicius, R. Rutkaite and V. Jankauskas, Synth. Met., 2008, 158, 383 CrossRef CAS; (b) H.-Y. Wang, F. Liu, L.-H. Xie, C. Tang, B. Peng, W. Huang and W. Wei, J. Phys. Chem. C, 2011, 115, 6961 CrossRef CAS; (c) W. Yang, Z. Zhang, C. Han, Z. Zhang, H. Xu, P. Yan, Y. Zhao and S. Liu, Chem. Commun., 2013, 49, 2822 RSC.
  4. (a) J. Verdome, S. Letand, F. Martin, F. Svinarchuk, P. Dubreuil, C. Auclair and M. L. Bret, J. Med. Chem., 2005, 48, 1493 Search PubMed; (b) C. M. Miller and F. O. McCarthy, RSC Adv., 2012, 2, 8883 RSC; (c) F. M. Deane, E. C. Osullivan, A. R. Maguine, J. Gilbert, J. A. Sakoff, A. McCluskey and F. O. McCarthy, Org. Biomol. Chem., 2013, 11, 1334 RSC.
  5. (a) E. A. Dubois, J. C. van den Bos, T. Doornbos, P. A. P. M. van Doremalen, G. A. Somsen, J. A. J. M. Vekemans, A. G. M. Janssen, H. D. Batink, G. J. Boer, M. Pfaffendorf, E. A. van Royen and P. A. Van Zwieten, J. Med. Chem., 1996, 29, 3256 CrossRef PubMed; (b) S. Chakraborty, D. Shukla, B. Mishra and S. Singh, Expert Opin. Drug Metab. Toxicol., 2010, 6, 237 CrossRef CAS PubMed.
  6. W.-S. Li, J. D. McChesney and F. S. El-Feraly, Phytochemistry, 1991, 30, 343 CrossRef CAS.
  7. (a) T.-S. Wu, S.-C. Huang and P.-L. Wu, Phytochemistry, 1996, 43, 1427 CrossRef CAS; (b) T.-S. Wu, S.-C. Huang, P.-L. Wu and C.-M. Teng, Phytochemistry, 1996, 43, 133 CrossRef CAS PubMed; (c) T.-S. Wu, S.-C. Huang, P.-L. Wu and C.-S. Kuoh, Phytochemistry, 1999, 52, 523 CrossRef CAS.
  8. (a) T.-S. Wu, S.-C. Huang, J.-S. Lai, C.-M. Teng, F.-N. Ko and C.-S. Kuoh, Phytochemistry, 1993, 32, 449 CrossRef CAS; (b) C. Ito, S. Katsuno, H. Ohata, M. Omura and I. Furukawa, Chem. Pharm. Bull., 1997, 45, 48 CrossRef CAS.
  9. T. Sripisut and S. Lphookhieo, J. Asian Nat. Prod. Res., 2010, 12, 614 CrossRef CAS PubMed.
  10. W. Maneerat, T. Ritthiwigrom, S. Cheenpracha, T. Promgool, K. Yossathera, S. Deachathai, W. Phakhodee and S. Laphookhieo, J. Nat. Prod., 2012, 75, 741 CrossRef CAS PubMed.
  11. C. Yenjai, S. Sripontan, P. Sriprajun, P. Kittakoop, A. Jintasirikul, M. Tanticharoen and Y. Thebtaranonth, Planta Med., 2000, 66, 277 CrossRef CAS PubMed.
  12. For selected reviews, see: (a) J. F. Hartwig, Angew. Chem., Int. Ed., 1998, 37, 2046 CrossRef CAS; (b) S. V. Ley and A. W. Thomas, Angew. Chem., Int. Ed., 2003, 42, 5400 CrossRef CAS PubMed; (c) D. S. Surry and S. L. Buchwald, Angew. Chem., Int. Ed., 2008, 47, 6338 CrossRef CAS PubMed; (d) F. Monnier and M. Taillefer, Angew. Chem., Int. Ed., 2009, 48, 6954 CrossRef CAS PubMed; (e) C. Fisher and B. Koenig, Beilstein J. Org. Chem., 2011, 7, 59 CrossRef PubMed; (f) T. Liu and H. Fu, Synthesis, 2012, 44, 2805 CrossRef CAS.
  13. Selected palladium catalyzed N-arylation reaction, see: (a) J. Yin, M. Zhao, M. A. Huffman and J. M. Macnamura, Org. Lett., 2002, 4, 3481 CrossRef CAS PubMed; (b) M. D. Charles, P. Schultz and S. L. Buchwald, Org. Lett., 2005, 7, 3965 CrossRef CAS PubMed; (c) S. Ueda, M. Su and S. L. Buchwald, Angew. Chem., Int. Ed., 2011, 50, 8944 CrossRef CAS PubMed; (d) D. Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura and S. L. Buchwald, Chem. Sci., 2011, 2, 57 RSC; (e) S. Ueda, M. Su and S. L. Buchwald, J. Am. Chem. Soc., 2012, 134, 700 CrossRef CAS PubMed.
  14. Selected copper catalyzed N-arylation reaction, see: (a) J. C. Antilla, A. Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 11684 CrossRef CAS PubMed; (b) B. M. Choudhary, C. Sridhar, M. L. Kantam, G. T. Venkanna and B. Sreedhar, J. Am. Chem. Soc., 2005, 127, 9948 CrossRef PubMed; (c) L. Zhu, P. Guo, G. Li, J. Lan, R. Xie and J. You, J. Org. Chem., 2007, 72, 8535 CrossRef CAS PubMed; (d) L. Liang, Z. Li and X. Zhou, Org. Lett., 2009, 11, 3294 CrossRef CAS PubMed; (e) Y. Zhang, X. Yang, Q. Yao and D. Ma, Org. Lett., 2012, 14, 3056 CrossRef CAS PubMed.
  15. D. M. T. Chan, K. L. Monaco, R. P. Wang and M. P. Winters, Tetrahedron Lett., 1998, 39, 2933 CrossRef CAS.
  16. D. A. Evans, J. L. Katz and T. R. West, Tetrahedron Lett., 1998, 39, 2937 CrossRef CAS.
  17. P. Y. S. Lam, C. G. Clark, S. Saubern, J. Adams, M. P. Winters, D. M. T. Chan and A. Combs, Tetrahedron Lett., 1998, 39, 2941 CrossRef CAS.
  18. (a) J. P. Collman and M. Zhong, Org. Lett., 2000, 2, 1233 CrossRef CAS PubMed; (b) J. P. Collman, M. Zhong, C. Zhang and S. Costanzo, J. Org. Chem., 2001, 66, 7892 CrossRef CAS PubMed.
  19. D. M. T. Chan and P. Y. S. Lam, in Boronic Acids: Preparation and Application in Organic Synthesis and Medicine, ed. D. G. Hall, Wiley-VCH, 2006, p. 205 Search PubMed.
  20. For Chan–Lam type coupling review, see: (a) J. X. Qiao and P. Y. S. Lam, Synthesis, 2011, 829 CrossRef CAS; (b) K. S. Rao and T. S. Wu, Tetrahedron, 2012, 68, 7735 CrossRef.
  21. For recent Chan–Lam type coupling of N-arylation, see: (a) C. He, C. Chen, J. Cheng, C. Liu, W. Liu, Q. Li and A. Li, Angew. Chem., Int. Ed., 2008, 47, 6414 CrossRef CAS PubMed; (b) K. Sreeramamurthy, E. Ashok, V. Mahendar, G. Santoshkumar and P. Das, Synlett, 2010, 721 CAS; (c) N. Matsuda, K. Hirano, T. Satoh and M. Miura, Angew. Chem., 2012, 51, 3702 CrossRef; (d) R. Adepu, K. Shivakumar, S. Sandra, D. Ramababu, G. Ramakrishna, C. Mallareddy, A. Kandale, P. Mishra and M. Pal, Bioorg. Med. Chem., 2012, 20, 5127 CrossRef CAS PubMed; (e) D. S. Raghuvanshi, A. K. Gupta and K. N. Singh, Org. Lett., 2012, 14, 4326 CrossRef CAS PubMed; (f) J. Li, S. Benard, L. Neuville and J. Zhu, Org. Lett., 2012, 14, 5980 CrossRef CAS PubMed; (g) T. Chen, Q. Huang, Y. Luo, Y. Hu and W. Lu, Tetrahedron Lett., 2013, 54, 1401 CrossRef CAS; (h) D. N. Rao, S. Rasheed, S. Aravinda, R. A. Vishwakarma and P. Das, RSC Adv., 2013, 3, 11472 RSC.
  22. For recent carbazole review, see: (a) A. W. Schmidt, K. R. Reddy and H.-J. Knölker, Chem. Rev., 2012, 112, 3193 CrossRef CAS PubMed; (b) J. Roy, A. K. Jana and D. Mal, Tetrahedron, 2012, 68, 6099 CrossRef CAS.
  23. For rececnt carbazole synthesis, see: (a) S.-W. Youn, J. H. Bihn and B. S. Kim, Org. Lett., 2011, 13, 3738 CrossRef CAS PubMed; (b) S. H. Cho, J. Yoon and S. Chang, J. Am. Chem. Soc., 2011, 133, 5996 CrossRef CAS PubMed; (c) W. Yang, J. Zhou, B. Wang and H. Ren, Chem.–Eur. J., 2011, 17, 13665 CrossRef CAS PubMed; (d) A. P. Antonchick, R. Samanta, K. Kulikov and J. Lategahn, Angew. Chem., Int. Ed., 2011, 50, 8605 CrossRef CAS PubMed; (e) W. Kong, C. Fu and S. Ma, Org. Biomol. Chem., 2012, 10, 2164 RSC; (f) Y. Qiu, D. Ma, C. Fu and S. Ma, Org. Biomol. Chem., 2013, 11, 1666 RSC; (g) S. Chakarborty, I. Chatterjee, L. Tebben and A. Studer, Angew. Chem., Int. Ed., 2013, 52, 2968 CrossRef PubMed.
  24. Carbazole synthesis from o-haloaniline, see: (a) L.-C. Campeau, P. Thansandote and K. Fagnou, Org. Lett., 2005, 7, 1857 CrossRef CAS PubMed; (b) R. B. Bedford and M. Betham, J. Org. Chem., 2006, 71, 9403 CrossRef CAS PubMed; (c) L.-C. Campeau, M. Parisien, A. Jean and K. Fagnou, J. Am. Chem. Soc., 2006, 128, 581 CrossRef CAS PubMed; (d) N. Della Ca, G. Sassi and M. Catellani, Adv. Synth. Catal., 2008, 350, 2179 CrossRef CAS; (e) M. E. Buden, V. A. Vaillard, S. E. Martin and R. A. Rossi, J. Org. Chem., 2009, 74, 4490 CrossRef CAS PubMed.
  25. G. Zeni and R. C. Larock, Chem. Rev., 2006, 106, 4644 CrossRef CAS PubMed.
  26. For synthesis of o-iodoaniline derivatives, see the ESI.
  27. J. C. Antilla and S. L. Buchwald, Org. Lett., 2001, 3, 2077 CrossRef CAS PubMed.
  28. D. Alberico, M. E. Scotts and M. Lautens, Chem. Rev., 2007, 107, 174 CrossRef CAS PubMed.
  29. For synthesis of methyl carbazole-3-carboxylate, see: (a) T. G. Back, A. Pandyra and J. E. Wulff, J. Org. Chem., 2003, 68, 3299 CrossRef CAS PubMed; (b) Z. Liu and R. C. Larock, Org. Lett., 2004, 6, 3739 CrossRef CAS PubMed; (c) C. Y. Liu and P. Knochel, Org. Lett., 2005, 7, 2543 CrossRef CAS PubMed; (d) L. Ackermann and A. Allthammen, Angew. Chem., Int. Ed., 2007, 46, 1627 CrossRef CAS PubMed.
  30. For synthesis of clausine alkaloids, see: (a) O. Kataeva, M. P. Krahl and H.-J. Knölker, Org. Biomol. Chem., 2005, 5, 3099 RSC; (b) M. P. Krahl, A. Jager, T. Krause and H.-J. Knölker, Org. Biomol. Chem., 2006, 4, 3215 RSC; (c) R. Forke, A. Jager and H.-J. Knölker, Org. Biomol. Chem., 2008, 6, 2481 RSC; (d) T. Watanabe, S. Oishi, N. Fuji and H. Ohno, J. Org. Chem., 2009, 74, 4720 CrossRef CAS PubMed; (e) W. Kong, C. Fu and S. Ma, Chem.–Eur. J., 2011, 17, 13134 CrossRef CAS PubMed; (f) M. P. Krahl, O. Kataeva, A. W. Schmidt and H.-J. Knölker, Eur. J. Org. Chem., 2013, 59 CrossRef CAS.
  31. For synthesis of methyl 6-methoxycarbazole-3-carboxylate, see: R. Forke, M. P. Krahl, T. Krause, T. G. Schlechtingen and H.-J. Knölker, Synlett, 2007, 268 CAS.
  32. Crystal data of 2f: C17H17N1O2, M = 267.32, monoclinic, space group: P21/n, a = 12.8565(7), b = 13.8210(7), c = 8.0271(4) Å, b = 98.229(5)°, V = 1411.63(13) Å3, Z = 4, Dc = 1.258 g cm−3, μ = 0.082 mm−1, T = 293(2) K, λ = 0.71073 Å, θ range: 3.9–27.0°, 1[thin space (1/6-em)]1900 reflections measured, 3031 independent (Rint = 0.0305), 249 parameters. The structure was solved by direct methods and refined by full-matrix least-squares on F2; final R indices for 1989 observed reflections [I > 2σ(I)]: R1 = 0.0520, wR2 = 0.1298; maximal/minimum residual electron density: 0.158/−0.213 Å−3. See ESI.
  33. For synthesis of glycozoline, see: (a) M. Iwao, H. Takehara, S. Furukawa and M. Watanabe, Heterocycles, 1993, 36, 1483 CrossRef CAS; (b) D. Kajiyama, K. Inoue, Y. Ishikawa and S. Nishiyama, Tetrahedron, 2010, 66, 9779 CrossRef CAS.
  34. C. Borger and H.-J. Knölker, Tetrahedron, 2012, 68, 6727 CrossRef.
  35. For synthesis of glycozolidine and glycozolidal, see: (a) M. Schmidt and H.-J. Knölker, Synlett, 2009, 2421 CAS; (b) V. Sridharan, M. A. Martin and J. C. Menendez, Eur. J. Org. Chem., 2009, 4614 CrossRef CAS.
  36. For synthesis of clausenalene, see: (a) P. Bhattacharayya, G. K. Biswas, A. K. Barua, C. Saha, I. B. Roy and B. K. Chowdhury, Phytochemistry, 1993, 33, 248 CrossRef; (b) T. L. Scott, X. Yu, S. P. Gorugantula, G. Carrero-Martinez and B. C. G. Soderberg, Tetrahedron, 2006, 62, 10835 CrossRef CAS.
  37. M. Fuchsenberger, R. Forke and H.-J. Knölker, Synlett, 2011, 2056 CAS.

Footnotes

Electronic supplementary information (ESI) available: Experimental details and spectroscopic data for all compounds. CCDC 909569. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3ra44903c
IIIM communication no. 1565.

This journal is © The Royal Society of Chemistry 2014
Click here to see how this site uses Cookies. View our privacy policy here.