Issue 7, 2013

Highly reproducible chronoamperometric analysis in microdroplets

Abstract

Here we report a method for highly reproducible chronoamperometric analysis of the contents of microdroplets. Aqueous microdroplets having volumes on the order of 1 nL and separated by a fluorocarbon solvent are generated within a microfluidic device using a T-shaped junction. The key finding is that stable and reproducible quasi-steady-state currents are observed if the electrochemical measurements are made in a narrowed segment of a microchannel. Under these conditions, the microdroplets are stretched, here by a factor of 10, leading to desirable intradroplet mass transfer characteristics. Microdroplet frequencies up to 0.67 s−1 are accessible using this method. The quasi-steady-state currents resulting from chronoamperometric analysis of microdroplets containing 1.0 mM Ru(NH3)63+ have relative standard deviations of just 1.8% and 2.8% at flow rates of 30 nL min−1 and 60 nL min−1, respectively. Importantly, the design of the microelectrochemical device ensures direct contact between intradroplet redox molecules and the electrode surface. That is, the fluorocarbon between microdroplets does interfere with inner-sphere electrocatalytic processes such as the oxygen reduction reaction. Finite-element simulations are presented that are in accord with the experimental findings.

Graphical abstract: Highly reproducible chronoamperometric analysis in microdroplets

Supplementary files

Article information

Article type
Paper
Submitted
16 Nov 2012
Accepted
21 Jan 2013
First published
06 Feb 2013

Lab Chip, 2013,13, 1364-1370

Highly reproducible chronoamperometric analysis in microdroplets

H. Liu and R. M. Crooks, Lab Chip, 2013, 13, 1364 DOI: 10.1039/C3LC41263F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements