Issue 42, 2012

In vitro digestion of emulsions: mechanistic and experimental models

Abstract

Digestion is a complex combination of physical, chemical and biological processes. In order to investigate the impact of food structure on the digestion of lipids, we work on a controllable triglyceride-based system: emulsion. In this study, the emulsion was composed of a single triglyceride (tricaprylin or triolein), decanal as a model lipophilic micronutrient, and a single emulsifier (β-lactoglobulin or sodium oleate) at different concentrations. We investigated the effects of these parameters on an in vitro intestinal static digestion, which was monitored using classic physicochemical methods: fatty acid titration, lipids extraction/chromatography and sizing. To interpret the results, we developed several mechanistic models based on mass transfer kinetics, which enable a direct comparison and identification of the factors influencing the digestion. These factors are the molar mass of the lipids, the initial interfacial area (droplet size) and dispersed volume fraction, the interfacial tension and dilatational viscoelasticity. We also developed an experimental digestion model based on a single droplet using tensiometry. This technique was able to monitor the kinetics of lipolysis and micellar solubilization simultaneously. All methods confirmed the result from our previous study that the type of triglyceride is the major parameter influencing the digestion. Moreover, the mechanistic and experimental models proved that digestion was usually faster for β-lactoglobulin emulsions/droplets compared to the sodium oleate ones. There was no clear effect of the emulsifier concentration.

Graphical abstract: In vitro digestion of emulsions: mechanistic and experimental models

Article information

Article type
Paper
Submitted
08 Jun 2012
Accepted
17 Aug 2012
First published
07 Sep 2012

Soft Matter, 2012,8, 10982-10993

In vitro digestion of emulsions: mechanistic and experimental models

S. Marze and M. Choimet, Soft Matter, 2012, 8, 10982 DOI: 10.1039/C2SM26336J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements