Issue 6, 2012

Phenylboronic acid-containing block copolymers: synthesis, self-assembly, and application for intracellular delivery of proteins

Abstract

The boronic acid group has been known to bind to sugars and living animal cells. Herein, a novel amphiphilic block copolymer poly(2-lactobionamidoethyl methacrylate)-block-poly(3-acrylamidophenylboronic acid) (p(LAMA-b-AAPBA)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. Due to the interaction between lactose moieties and phenylboronic acid moieties in p(LAMA-b-AAPBA), the copolymer could easily form nanoparticles in a spherical shape. The p(LAMA-b-AAPBA) nanoparticles had mean sizes from 238 to 403 nm with a zeta potential of about −20 mV. To study the feasibility of p(LAMA-b-AAPBA) nanoparticles acting as the potential nanocarrier for protein delivery, insulin, as a drug model, was encapsulated into the nanoparticles, the loading capacity was about 11%. Moreover, the nanoparticles demonstrated a sustained release of insulin and had no cytotoxicity on Chinese hamster ovary cells (CHO) and human colorectal carcinoma (Caco-2) cells. Confocal laser scanning microscopy showed that the nanoparticles could be taken up by Caco-2 cells, indicating that the stimuli-response of phenylboronic acid to carbohydrates on the cell surface facilitated the nanoparticles to bind to Caco-2 cells. Thus, the p(LAMA-b-AAPBA) nanoparticles can be considered as a promising carrier for protein transport.

Graphical abstract: Phenylboronic acid-containing block copolymers: synthesis, self-assembly, and application for intracellular delivery of proteins

Article information

Article type
Paper
Submitted
30 Nov 2011
Accepted
24 Mar 2012
First published
16 Apr 2012

New J. Chem., 2012,36, 1413-1421

Phenylboronic acid-containing block copolymers: synthesis, self-assembly, and application for intracellular delivery of proteins

C. Cheng, X. Zhang, Y. Wang, L. Sun and C. Li, New J. Chem., 2012, 36, 1413 DOI: 10.1039/C2NJ20997G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements