Issue 13, 2012

Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons

Abstract

Sb-doped ZnTe nanoribbons (NRs) with enhanced p-type conductivity were successfully synthesized by a simple thermal co-evaporation method. Nanodevices, including nano-field-effect transistors (FETs) and nano-photodetectors (nanoPDs), were constructed based on the ZnTe:Sb NRs and their structure dependent device performances were systemically investigated. It is found that the transport properties of the ZnTe nanostructures as well as the device structures play a critical role in determining the device performances. In contrast to the nano-metal-oxide-semiconductor FETs (nanoMOSFETs) with back-gate structure, the top-gate nano-metal-insulator-semiconductor FETs (nanoMISFETs) show much enhanced performances in all aspects. On the other hand, owing to the appropriate p-type doping, nano-photodetectors (nanoPDs) based on the ZnTe:Sb NRs exhibit excellent device performances, such as high responsivity and photoconductive gain, fast response speed, large detectivity and so on. Moreover, the response time could be effectively shortened by using nano-heterojunction photodetectors (nanoHPDs). It is expected that knowledge gained from this work could be readily extended to nanodevices based on other nanostructures.

Graphical abstract: Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons

Article information

Article type
Paper
Submitted
16 Dec 2011
Accepted
02 Feb 2012
First published
17 Feb 2012

J. Mater. Chem., 2012,22, 6206-6212

Device structure-dependent field-effect and photoresponse performances of p-type ZnTe:Sb nanoribbons

D. Wu, Y. Jiang, Y. Zhang, J. Li, Y. Yu, Y. Zhang, Z. Zhu, L. Wang, C. Wu, L. Luo and J. Jie, J. Mater. Chem., 2012, 22, 6206 DOI: 10.1039/C2JM16632A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Spotlight

Advertisements