Issue 38, 2012

Mesoporous α-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation

Abstract

This work reports a facile and cost-effective method for synthesizing photoactive α-Fe2O3 films as well as their performances when used as photoanodes for water oxidation. Transparent α-Fe2O3 mesoporous films were fabricated by template-directed sol–gel chemistry coupled with the dip-coating approach, followed by annealing at various temperatures from 350 °C to 750 °C in air. α-Fe2O3 films were characterized by X-ray diffraction, XPS, FE-SEM and electrochemical measurements. The photoelectrochemical performance of α-Fe2O3 photoanodes was characterized and optimized through the deposition of Co-based co-catalysts via different methods (impregnation, electro-deposition and photo-electro-deposition). Interestingly, the resulting hematite films heat-treated at relatively low temperature (500 °C), and therefore devoid of any extrinsic dopant, achieve light-driven water oxidation under near-to-neutral (pH = 8) aqueous conditions after decoration with a Co catalyst. The onset potential is 0.75 V vs. the reversible hydrogen electrode (RHE), thus corresponding to 450 mV light-induced underpotential, although modest photocurrent density values (40 μA cm−2) are obtained below 1.23 V vs. RHE. These new materials with a very large interfacial area in contact with the electrolyte and allowing for a high loading of water oxidation catalysts open new avenues for the optimization of photo-electrochemical water splitting.

Graphical abstract: Mesoporous α-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2012
Accepted
27 Jul 2012
First published
22 Aug 2012

Phys. Chem. Chem. Phys., 2012,14, 13224-13232

Mesoporous α-Fe2O3 thin films synthesized via the sol–gel process for light-driven water oxidation

W. Hamd, S. Cobo, J. Fize, G. Baldinozzi, W. Schwartz, M. Reymermier, A. Pereira, M. Fontecave, V. Artero, C. Laberty-Robert and C. Sanchez, Phys. Chem. Chem. Phys., 2012, 14, 13224 DOI: 10.1039/C2CP42535A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements