Issue 10, 2006

Structural studies and polymorphism in amorphous solids and liquids at high pressure

Abstract

When amorphous materials are compressed their structures are expected to change in response to densification. In some cases, the changes in amorphous structure can be discontinuous and they can even have the character of first-order phase transitions. This is a phenomenon referred to as polyamorphism. Most evidence for polyamorphic transitions between low and high density liquids or analogous transformations between amorphous forms of the same substance to date has been indirect and based on the changes in thermodynamic and other structure-related properties with pressure. Recent studies using advanced X-ray and neutron scattering methods combined with molecular dynamics simulations are now revealing the details of structural changes in polyamorphic systems as a function of pressure. Various “two state” or “two species” models are used to understand the anomalous densification behaviour of liquids with melting curve maxima or regions of negative melting slope. Thermodynamic analysis of the two state model leads to the possibility of low- to high-density liquid transitions caused by differences in bulk thermodynamic properties between different amorphous forms and on the degree of cooperativity between low- and high-density structural configurations. The potential occurrence of first-order transitions between supercooled liquids is identified as a critical-like phenomenon. In this tutorial review we discuss the background to polyamorphism, incorporating the experimental observations, simulation studies and the two-state models. We also describe work carried on several systems that are considered to be polyamorphic.

Graphical abstract: Structural studies and polymorphism in amorphous solids and liquids at high pressure

Article information

Article type
Critical Review
Submitted
19 Jul 2006
First published
30 Aug 2006

Chem. Soc. Rev., 2006,35, 964-986

Structural studies and polymorphism in amorphous solids and liquids at high pressure

M. C. Wilding, M. Wilson and P. F. McMillan, Chem. Soc. Rev., 2006, 35, 964 DOI: 10.1039/B517775H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements