Nucleophilic cleavage of 1-oxo-2,8-disubstituted-2,5,8-triaza-1λ5-phosphabicyclo[3.3.0]octanes: a new route to eight- and five-membered heterocyclic systems

(Note: The full text of this document is currently only available in the PDF Version )

Zhengjie He, Susan Laurens, Xavier Y. Mbianda, Agnes M. Modro and Tomasz A. Modro


Abstract

Five 1-oxo-2,8-disubstituted-2,5,8-triaza-1λ5-phosphabicyclo[3.3.0]octanes 1 have been prepared and the nucleophilic cleavage of one of their P–N bonds has been studied. The acid-catalyzed alcoholysis involves in each case the cleavage of the P–N(5) bond, yielding the eight-membered monocyclic diamides 2. In the base-catalyzed reaction, the N(2),N(8)-dialkyl substituted substrates 1 yielded the same products 2, while for the N(2),N(8)-diaryl derivatives the exclusive cleavage of the P–N(2) (or P–N(8)) bond was observed yielding the isomeric 1,3,2-diazaphospholidine products 3. Products 2 are stable as N(5) ammonium salts or N(5)-acyl derivatives, but as free bases they rearrange spontaneously to products 3 via the intramolecular N(5)→P nucleophilic attack accompanied with the P–N(2) (or P–N(8)) bond cleavage. The effect of the N(2)- and N(8)-substituents in 2 on the rate of the 2→3 rearrangement, as well as on the product distribution for the unsymmetrically disubstituted substrates has been investigated. The mechanism of the formation of products 3 via the rearrangement and via the direct 1→3 nucleophilic cleavage is discussed in terms of the reactivity of the attacking nucleophile, the electrophilicity of the phosphoryl center, and of the basicity of the departing amine in the P–N bond cleavage step.


References

  1. H. Wan and T. A. Modro, Synthesis, 1996, 1227 CrossRef CAS.
  2. S. A. Bourne, Z. He, T. A. Modro and P. H. van Rooyen, Chem. Commun., 1999, 853 RSC.
  3. X. Y. Mbianda, T. A. Modro and P. H. van Rooyen, Chem. Commun., 1998, 741 RSC.
  4. J. Rahil and P. Haake, J. Am. Chem. Soc., 1981, 103, 1723 CrossRef CAS and references cited therein.
  5. A. M. Modro, T. A. Modro, P. Bernatowicz, W. Schilf and L. Stefaniak, Magn. Reson. Chem., 1997, 35, 774 CrossRef CAS.
  6. W. von Philipsborn and R. Müller, Angew. Chem., Int. Ed. Engl., 1986, 25, 383 CrossRef.
  7. M. J. P. Harger, J. Chem. Soc., Perkin Trans. 1, 1975, 514 RSC See also: B. Krzyzanowska and W. J. Stec, Synthesis, 1982, 270 Search PubMed.
  8. Conformational Analysis of Medium-Sized Heterocycles, ed. R. S. Glass, VCH, New York, 1988, ch. 3.8 Search PubMed.
  9. R. K. Sharma and R. Vaidyanathaswamy, J. Org. Chem., 1982, 47, 1741 CrossRef CAS.
  10. D. E. C. Corbridge, Phosphorus. An Outline of its Chemistry, Biochemistry and Technology, Elsevier, Amsterdam, 1990, p. 50 Search PubMed.
  11. M. P. du Plessis, T. A. Modro and L. R. Nassimbeni, J. Org. Chem., 1982, 47, 2313 CrossRef CAS.
  12. D. W. J. Cruickshank, Acta Crystallogr., 1964, 17, 671 CrossRef.
  13. H. B. Bürgi, Angew. Chem., Int. Ed. Engl., 1975, 14, 460 CrossRef.
  14. S. Bauermeister, A. M. Modro, T. A. Modro and A. Zwierzak, Can. J. Chem., 1991, 69, 811 CAS.
  15. Unpublished result from this laboratory.
Click here to see how this site uses Cookies. View our privacy policy here.