Synthesis of novel uranyl salophene derivatives and evaluation as sensing molecules in chemically modified field effect transistors (CHEMFETs)

(Note: The full text of this document is currently only available in the PDF Version )

Martijn M. G. Antonisse, Bianca H. M. Snellink-Ruël, Alina C. Ion, Johan F. J. Engbersen and David N. Reinhoudt


Abstract

Several anion receptors have been synthesized based on the uranyl salophene moiety. The binding selectivity of the receptors can be influenced by substituents near the uranyl binding site of the receptor, which change the electron density of the uranyl center, the lipophilicity of the binding cleft, or provide sites for hydrogen bonding. The differences in binding selectivity are reflected in the selectivity of potentiometric sensors (chemically modified field effect transistors, CHEMFETs) developed with these receptors. The use of a uranyl salophene derivative with phenyl substituents near the binding site yields acetate selective sensors with selectivity over much more lipophilic anions like Cl and Br (log K[hair space] PotAcO,j = –1.2). Lipophilic N-octanamido substituents near the uranyl center provide F selective CHEMFETs. The presence of urea moieties in the proximity of the binding site results in an even stronger F binding receptor which yields CHEMFETs which can detect F even in the presence of a 150-fold excess of the very lipophilic SCN anion (log K[hair space] PotF,SCN = –2.2).


References

  1. For recent reviews dealing with anion receptors see: (a) M. M. G. Antonisse and D. N. Reinhoudt, Chem. Commun., 1998, 443 RSC; (b) F. P. Schmidtchen and M. Berger, Chem. Rev., 1997, 97, 1609 CrossRef CAS; (c) J. Scheerder, J. F. J. Engbersen and D. N. Reinhoudt, Recl. Trav. Chim. Pays-Bas, 1996, 115, 307 CAS; (d) J. L. Atwood, K. T. Holman and J. W. Steed, Chem. Commun., 1996, 1401 RSC.
  2. D. M. Rudkevich, W. Verboom, Z. Brzozka, M. J. Palys, W. P. R. V. Stauthamer, G. J. van Hummel, S. M. Franken, S. Harkema, J. F. J. Engbersen and D. N. Reinhoudt, J. Am. Chem. Soc., 1994, 116, 4341 CrossRef CAS.
  3. S. M. Lacy, D. M. Rudkevich, W. Verboom and D. N. Reinhoudt, J. Chem. Soc., Perkin Trans. 2, 1995, 135 RSC.
  4. M. M. G. Antonisse, B. H. M. Snellink-Ruël, I. Yigit, J. F. J. Engbersen and D. N. Reinhoudt, J. Org. Chem., 1997, 62, 9034 CrossRef CAS.
  5. M. M. G. Antonisse, B. H. M. Snellink-Ruël, J. F. J. Engbersen and D. N. Reinhoudt, Sens. Actuators B, 1998, 47, 9 CrossRef.
  6. M. M. G. Antonisse, B. H. M. Snellink-Ruël, J. F. J. Engbersen and D. N. Reinhoudt, J. Chem. Soc., Perkin Trans. 2, 1998, 773 RSC.
  7. A. R. van Doorn, M. Bos, S. Harkema, J. van Eerden, W. Verboom and D. N. Reinhoudt, J. Org. Chem., 1991, 56, 2371 CrossRef CAS.
  8. M. M. G. Antonisse, B. H. M. Snellink-Ruël, J. F. J. Engbersen and D. N. Reinhoudt, J. Org. Chem., 1998, 63, 9776 CrossRef CAS.
  9. (a) C. J. van Staveren, J. van Eerden, F. C. J. M. van Veggel, S. Harkema and D. N. Reinhoudt, J. Am. Chem. Soc., 1988, 110, 4994 CrossRef CAS; (b) A. M. Reichwein, Metallomacrocycles as Enzyme Models, PhD Thesis, University of Twente, The Netherlands, 1993, pp. 77–81 Search PubMed.
  10. Dangerous Properties of Industrial Materials, 5th edn., ed. N. I. Sax, van Nostrand Reinhold Company, New York, 1979, pp. 1078–1079 Search PubMed.
  11. I. Ikeda, H. Yamazaki, T. Konishi and M. Okahara, J. Membr. Sci., 1989, 46, 113 CrossRef CAS.
  12. R. P. Buck and E. Lindner, Pure Appl. Chem., 1994, 66, 2527 CrossRef CAS.
  13. E. J. R. Sudhölter, P. D. van der Wal, M. Skowronska-Ptasinska, A. van den Berg, P. Bergveld and D. N. Reinhoudt, Anal. Chim. Acta, 1990, 230, 59 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.