Synthesis, crystal structure and properties of the semiconducting molecular charge-transfer salt (bedt-ttf)2Ge(C2O4)3·PhCN [bedt-ttf=bis(ethylenedithio)tetrathiafulvalene]

(Note: The full text of this document is currently only available in the PDF Version )

Lee Martin, Scott S. Turner, Peter Day, Philippe Guionneau, Judith A. K. Howard, Mikio Uruichi and Kyuya Yakushi


Abstract

The synthesis, crystal structure and physical properties of a new bedt-ttf charge transfer salt containing the tris(oxalato)germanium(IV) anion are described and interpreted. Electrochemical oxidation of neutral bedt-ttf in the presence of (NH4)2Ge(C2O4)3·2H2O in PhCN solution yields crystals of (bedt-ttf)2Ge(C2O4)3·PhCN. The crystal structure has been solved at 296(2) and at 120(2) K. In contrast to the well known tris(oxalato)-metallate(III) salts of bedt-ttf, the structure does not contain alternating layers of bedt-ttf cations and tris(oxalato)metallate anions, but consists of a ‘checker board’ arrangement of face-to-face bedt-ttf dimers with [Ge(C2O4)3]2– interspersed by layers of solvent molecules. Each bedt-ttf molecule has a charge close to +1, which is estimated from the empirical relationship between C[double bond, length as m-dash]C and C–S bond lengths and these charges are correlated with Raman spectra. As expected from the presence of strongly dimerised (bedt-ttf+)2 units the salt is a semiconductor between 300 and 120 K with a low activation energy of 0.127 eV.


References

  1. J. M. Williams, J. R. Ferraro, R. J. Thom, K. D. Carlson, U. Gesser, H. H. Wang, A. M. Kini and M.-H. Whangbo, Organic Superconductors (including Fullerenes) Synthesis, Structure, Properties and Theory, Prentice-Hall, New York, NY, 1992 Search PubMed.
  2. S. Kagoshima, The Physics and Chemistry of Organic Superconductors, Springer-Verlag, Berlin, 1990 Search PubMed.
  3. A. W. Graham, M. Kurmoo and P. Day, J. Chem. Soc., Chem. Commun., 1995, 1513 RSC.
  4. M. Kurmoo, A. J. Graham, P. Day, S. J. Coles, M. B. Hursthouse, J. L. Caulfield, J. Singleton, F. L. Pratt, W. Hayes, L. Ducasse and P. Guionneau, J. Am. Chem. Soc., 1995, 117, 12209 CrossRef CAS.
  5. L. Martin, S. S. Turner, P. Day, F. E. Mabbs and E. J. L. McInnes, Chem. Commun., 1997, 1367 RSC.
  6. L. Martin, S. S. Turner, P. Day, K. M. Abdul Malik, S. J. Coles and M. B. Hursthouse, Chem. Commun., 1999, 513 RSC.
  7. S. S. Turner, P. Day, K. M. Abdul Malik, M. B. Hursthouse, S. J. Teat, E. J. Maclean, L. Martin and S. French, Inorg. Chem., 1999, 38, 3543 CrossRef CAS.
  8. S. Sun, P. Wu, Q. Zhang and D. Zhu, Synth. Met., 1998, 94, 161 CrossRef CAS.
  9. P. Day and M. Kurmoo, Synth. Met., 1997, 85, 1445 CrossRef CAS.
  10. For example see C. Mathonière, C. J. Nuttall, S. G. Carling and P. Day, Inorg. Chem., 1996, 35, 1201 Search PubMed.
  11. P. Arvedson and E. M. Larse, Inorg. Synth., 1966, 8, 35.
  12. SAINT Version 4.050. Siemens Analytical X-ray Instruments, Madison, WI, 1995.
  13. G. M. Sheldrick, SADABS Empirical Absorption Program, University of Gottingen, 1996.
  14. G. M. Sheldrick, SHELXTL-Plus, Release 4.1, Siemens Analytical X-ray Instruments Inc., Madison, WI, 1991.
  15. S. S. Turner, L. M. Martin and P. Day, unpublished results.
  16. K. A. Abbond, M. B. Clavenger, G. F. De Oliveira and D. R. Talham, J. Chem. Soc., Chem. Commun., 1993, 1560 RSC.
  17. P. Guionneau, C. J. Kepert, D. Chasseau, M. R. Truter and P. Day, Synth. Met., 1997, 86, 1973 CrossRef CAS.
  18. H. H. Wang, J. R. Ferraro, J. M. Williams, U. Geiser and J. A. Schlueter, J. Chem. Soc., Chem. Commun., 1994, 1893 RSC.