Environmental benefits of methanesulfonic acid . Comparative properties and advantages

(Note: The full text of this document is currently only available in the PDF Version )

Michael D. Gernon, Min Wu, Thomas Buszta and Patrick Janney


Abstract

This paper reviews some chemical and physical characteristics of methanesulfonic acid and the short-chain alkanesulfonic acids in general. The aqueous solubility of metal methanesulfonates, the conductivity of aqueous methanesulfonic acid (MSA) solutions and the low toxicity of MSA all make MSA(aq) an ideal electrolyte for many electrochemical processes, especially those involving tin and lead. Aspects of aqueous process effluent treatment, acid recovery and metal alkanesulfonate salt preparation are also environmentally favorable. Emphasis in this paper is given to rationalizing the rapidly growing commercial preference for MSA(aq) as an electrochemical electrolyte, especially with respect to the substitution of MSA for HBF4 in the electroplating of Sn/Pb solder. Economic aspects of MSA are also considered.


References

  1. F. Lowenheim, Electroplating, Technical Reference Publications, Isle of Man, UK, 1995 Search PubMed.
  2. M. Jordan, The Electrodeposition of Tin and its Alloys, Leuze Verlag, Saulgau, Germany, 1995 Search PubMed.
  3. Ferrostan is a phenolsulfonic acid based tin plating process, USS Corp., Pittsburg, PA, USA; Ronastan is a MSA based tin plating process, Shipley Ronal, Freeport, NY, USA; Techni Solder is a MSA based Sn/Pb solder plating process, Technic, Inc., Cranston, RI, USA; Solderon is a MSA based Sn/Pb solder plating process, Shipley Ronal, Freeport, NY, USA.
  4. S. Patai and Z. Rappoport, The Chemistry of Sulphonic Acids, Esters and their Derivatives, John Wiley and Sons, New York, 1991, p. 251 Search PubMed.
  5. S. Meibuhr and P. R. Carter, Electrochem. Technol. (J. Electrochem. Soc.), 1964, 2, 267 Search PubMed; J. A. McCarthy, Plating (Plating Surf. Finishing), 1960, 805 Search PubMed These references measure the oxidizing characteristics of numerous aqueous electrolytes other than MSA(aq) toward Sn(II). The data for MSA(aq) were generated at Elf Atochem's King of Prussia R&D Center by employing experiments similar to those described in the references.
  6. Springborn Laboratories, Inc., An Acute Oral Toxicity Study in Rats with 70% Methane Sulfonic Acid, SLI Study No. 3255.11, 07/11/97 Search PubMed.
  7. Fluoroboric acid, MSDS available from Aldrich Chemical Company, Milwaukee, WI, USA; fluorosilicic acid, MSDS available from Riedel-de-Haen, St. Louis, MO, USA.
  8. Internal study conducted at Elf Atochem NA, King of Prussia, PA, USA.
  9. S. C. Baker, D. P. Kelly and J. C. Murrell, Nature, 1991, 350, 627 CAS.
  10. M. Gernon, US Pat., 5520794; assigned to Elf Atochem NA, Inc., 1996(filed in 5/95) Search PubMed; F. Vork, Tijdschr. Oppervlaktetech. Corrosiebestrijd., 1995, 39, 242 Search PubMed (published in 6/95).
  11. Noller and Gordon, J. Am. Chem. Soc., 1933, 55, 1090 CrossRef; McBain and Williams, J. Am. Chem. Soc., 1933, 55, 2250 CrossRef.
  12. M. D. Gernon, M. Nosowitz and N. Martyak, US Pat. Pending, USSN 08/798985 filed; 2/11/97 Search PubMed.
  13. Kirk–Othmer Encyclopedia of Chemical Technology, 4th edn., John Wiley and Sons, New York, 1994, vol. 11, pp. 309–323 Search PubMed.
  14. Ullman's Encyclopedia of Industrial Chemistry, 5th edn., VCH, New York, 1988, A11, pp. 334–347 Search PubMed.
  15. W. Proell, US Pat. 2433396; assigned to Standard Oil of Indiana, 1947(NOx catalyzed air oxidation of RSH) Search PubMed; W. Proell, US Pat. 2489316; assigned to Standard Oil of Indiana, 1949(sulfonic anhydride preparation) Search PubMed; W. Proell, U.S. Patent 2,505,910; assigned to Standard Oil of Indiana, 1950(sulfonic acid manufacture) Search PubMed; W. Proell, US Pat. 2502619; assigned to Standard Oil of Indiana, 1950(purifying salts of sulfonic acids) Search PubMed; W. Proell, US Pat. 2567399; assigned to Standard Oil of Indiana, 1951(purifying sulfonic acids) Search PubMed.
  16. W. Proell, US Pat. 2564077; assigned to Standard Oil of Indiana, 1951 Search PubMed; W. Proell, J. Org. Chem., 1955, 16, 178 Search PubMed.
  17. W. Proell, US Pat. 2576535; assigned to Standard Oil of Indiana, 1951 Search PubMed; W. Proell and C. Adams, Ind. Eng. Chem., 1949, 41, 2217 Search PubMed.
  18. W. Proell, US Pat. 2525942; assigned to Standard Oil of Indiana, 1950 Search PubMed; W. Proell, C. Adams and B. Shoemaker, Ind. Eng. Chem., 1948, 40, 1129 Search PubMed.
  19. W. Proell, US Pat. 2525943; assigned to Standard Oil of Indiana, 1950 Search PubMed.
  20. R. Guertin, US Pat. 3626004; assigned to Pennwalt Corporation, 1967 Search PubMed.
  21. G. Wheaton, US Pat. 4680095; assigned to Pennwalt Corporation, 1987 Search PubMedThis methodology was first described by D. Pletcher and C. J. Myall, J. Chem, Soc., Perkin Trans. 1, 1975, 590 Search PubMed.
  22. C. Rosenstein, Met. Finish., 1990, January, 17 Search PubMed.
  23. J. A. Gonzalez, PhD Thesis, University of British Columbia, Electrochemical Processes Within the Slimes Layer of Lead Anodes During Betts Electrorefining, 1991, p. 6 Search PubMed; Abstract available from: Diss. Abstr. Int. B, 1993, 53, 4885 Search PubMed.
  24. Work in progress at Elf Atochem.
  25. M. Capelato, J. Nobrega and E. Neves, J. Appl. Electrochem., 1995, 25, 408 CAS; A. M. Bond, S. R. Ellis and A. F. Hollenkamp, J. Am. Chem. Soc., 1988, 110, 5293 CrossRef CAS.
  26. Internal study conducted at Elf Atochem NA, KoP Technical Center, King of Prussia, PA, USA; SolderOn Process TechSpec #47400, Shipley Ronal Corporation, Freeport, NY, USA, reprinted 2/11/85.
  27. J. A. Gonzalez, PhD Thesis, University of British Columbia, Electrochemical Processes Within the Slimes Layer of Lead Anodes During Betts Electrorefining, 1991, pp. 193–196, 312–314 Search PubMed; abstract available from: Diss. Abstr. Int. B, 1993, 53, 4885 Search PubMed.
  28. Note that this market is largely dominated by patents issued to Shipley Ronal Corporation of Freeport, NY, USA; see, for example, US Pat. 5174887, 1992, assigned to LeaRonal Corporation, Freeport, NY, USA Search PubMed.
  29. T. Kondo, S. Masaki, H. Inoue and K. Yamakawa, Met, Finish., 1991 October, 32 Search PubMed; S. Masaki, H. Inoue and K. Yamakawa, Hyomen Gijutsu Kyokai, 1997, 48, 643 Search PubMed.
  30. N. Martyak, WO 99J/02765; assigned to Atotech Gmbh, 1999.
  31. W. A. Proell, C. L. Faust, B. Agruss and E. L. Combs, Monthly Rev. Am. Electroplaters Soc., 1947, 34, 541 Search PubMed.
  32. N. M. Martyak, A. Jones and R. Wormuth, Proceedings of the International Symposium, Zinc-Based Steel Coating Systems: Production and Performance, held at the TMS Annual Meeting, San Antonio, Texas, 1998, pp. 293–303 Search PubMed.
  33. Note that this process is covered by international patents. M. D. Gernon, US Pat. 5491247; assigned to Elf Atochem, 1996 Search PubMed; M. D. Gernon, Eur. Pat. EP 0711753A1; assigned to Elf Atochem, 1996 Search PubMed.
  34. M. D. Gernon, G. Smith and J. Elkins, Proceedings of the 12th Annual International Forum on Electrolysis in the Chemical Industry, Clearwater Beach, FL, 1998 Search PubMed.
  35. R. C. Paul, V. P. Kapila and S. K. Sharma, Indian J. Chem., 1974, 12, 651 Search PubMed.