Friedel–Crafts acylation using sulfated zirconia catalyst

(Note: The full text of this document is currently only available in the PDF Version )

G. D. Yadav and A. A. Pujari


Abstract

Synthesis of fine chemicals and intermediates by using Friedel–Crafts acylations is an important process in organic chemical technology. In most cases, very good yield and selectivity can be obtained with aluminium chloride as catalyst in conjunction with nitrobenzene as solvent. However, with modern environmental restrictions, in consonance with green chemistry, replacement of aluminium chloride–nitrobenzene or BF3–HF with solid catalysts has great industrial relevance. Acylation of benzene with 4-chlorobenzoyl chloride was attempted with different solid acid catalysts such as dodecatungstophosphoric acid (DTPA), DTPA/K-10 clay, K-10, Amberlite, Amberlyst-15, Indion-130, Filtrol-24 clay, and sulfated zirconia. However, only sulfated zirconia was found to be effective leading to 100% selective formation of 4-chlorobenzophenone, which is useful as an organic and pharmaceutical intermediate; for instance, in the manufacture of Cytrazin—a well known drug. The kinetics of the reaction was studied to establish that the reaction obeys the Langmuir–Hinshelwood–Hougen–Watson mechanism with very weak adsorption of the reactants. The reaction is intrinsically kinetically controlled.


References

  1. G. A. Olah, Friedel–Crafts and Related Reactions, Wiley-Interscience, New York, 1963, vol. 1 Search PubMed.
  2. J. A. Hyat and P. W. Raynolds, J. Org. Chem., 1984, 49, 384 CrossRef CAS.
  3. P. Sommai, O. Kazumi, M. Masahiro, M. Satoni and N. Masakatsu, J. Chem. Soc., Perkin Trans. 1, 1994, 1703 RSC.
  4. P. S. Kumbhar and G. D. Yadav, Chem. Eng. Sci., 1989, 44, 2535 CrossRef CAS.
  5. T. S. Thorat, V. M. Yadav and G. D. Yadav, Appl. Catal. A: Gen., 1992, 90, 73 CrossRef CAS.
  6. G. D. Yadav, P. S. Kumbhar and T. S. Thorat, Tetrahedron Lett., 1993, 34, 529 CrossRef CAS.
  7. G. D. Yadav and P. H. Mehta, Ind. Eng. Chem. Res., 1994, 33, 2198 CrossRef CAS.
  8. G. D. Yadav, PAFAI J., 1994, 16, 13 Search PubMed.
  9. G. D. Yadav and N. Kirthivasan, J. Chem. Soc., Chem. Commun., 1995, 203 RSC.
  10. A. B. Dixit and G. D. Yadav, React. Funct. Polym., 1996, 31, 237 CrossRef CAS.
  11. A. B. Dixit and G. D. Yadav, React. Funct. Polym., 1996, 31, 251 CrossRef CAS.
  12. G. D. Yadav and T. S. Thorat, Tetrahedron Lett., 1996, 37, 5405 CrossRef CAS.
  13. G. D. Yadav and T. S. Thorat, Ind. Eng. Chem. Res., 1996, 35, 721 CrossRef CAS.
  14. G. D. Yadav and V. V. Bokade, Appl. Catal. A: Gen., 1996, 147, 299 CrossRef CAS.
  15. G. D. Yadav and V. V. Bokade, Appl. Catal. A: Gen., 1997, 154, 29 CrossRef CAS.
  16. G. D. Yadav and D. V. Satoskar, J. Chem. Technol. Biotechnol., 1997, 69, 438 CrossRef CAS.
  17. G. D. Yadav and M. S. Krishnan, Org. Process Res. Dev., 1998, 2, 95 Search PubMed.
  18. G. D. Yadav and M. S. Krishnan, Ind. Eng. Chem. Res., 1998, 37, 3358 CrossRef CAS.
  19. G. D. Yadav and J. J. Nair, Chem. Commun., 1998, 2370 Search PubMed.
  20. G. D. Yadav and M. S. Krishnan, Chem. Eng. Sci. 1999, in press Search PubMed.
  21. M. Labrouiller, C. le Roux, H. Gaspard, A. Laporterie and J. Dubac, Tetrahedron Lett., 1997, 38, 8871 CrossRef.
  22. N. R. Ayyanger, R. J. Lahoti and K. Srinivasan, Synthesis, 1991, 4, 322 CrossRef.
  23. X. Song and A. Sayari, Catal. Rev. Sci. Eng., 1996, 38, 329 Search PubMed.
  24. G. D. Yada and J. J. Nair, Microporous Mesoporous Mater. (fromerly Zeolites), 1999 in press Search PubMed.
  25. P. S. Kumbhar, V. M. Yadav and G. D. Yadav, in Chemically Modified Oxide Surfaces, ed. Layden and W. Collins, Gordon and Breac, New York, 1989 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.