An NMR study and crystal structure of [{cis-Pt(NH3)2(9EtG-κN7)}2(µ-pz)][NO3]3 (9EtG = 9-ethylguanine) as a model compound for the 1,2-intrastrand GG crosslink[hair space]

(Note: The full text of this document is currently only available in the PDF Version )

Seiji Komeda, Hirofumi Ohishi, Hirotoshi Yamane, Michinori Harikawa, Ken-ichi Sakaguchi and Masahiko Chikuma


Abstract

The platinum(II) complex [{cis-Pt(NH3)2(9EtG-κN7)}2(µ-pz)][NO3]3·4H2O 2 (pz = pyrazolate, 9EtG = 9-ethylguanine) was prepared from [{cis-Pt(NH3)2}2(µ-OH)(µ-pz)][NO3]2 1 and 9EtG. It was characterized by 1H and 195Pt NMR, and a crystal structure determination was performed. All 1H NMR chemical shifts from the 9EtG ligands are observed at higher fields compared with those of free 9EtG, which is ascribed to their stacking interaction. The two 9EtG ligands are in a head-to-head orientation, and two intramolecular hydrogen bonds are observed between the ammine ligands and O6 oxygen atoms of the 9EtG ligands. The dihedral angle between the guanine planes is 10.8°, and the average distance is 3.89 Å.


References

  1. C. F. J. Barnard, Platinum Met. Rev., 1989, 33, 162 Search PubMed; J. Reedijk, Chem. Commun., 1996, 801 RSC.
  2. J. H. Burchenal, K. Kalaher, K. Dew, L. Lokys and G. Gale, Biochimie, 1978, 60, 961 CAS; A. Eastman and E. Bresnick, Biochem. Pharmacol., 1981, 30, 2721 CrossRef CAS.
  3. D. D. Von Hoff, R. Schilsky and C. M. Reichert, Cancer Treat. Rep., 1979, 63, 1527 Search PubMed; R. S. Goldstein, B. Noordewier, J. T. Bond, J. B. Hook and G. H. Mayor, Toxicol. Appl. Pharmacol., 1981, 60, 163 CAS.
  4. K. Inagaki and Y. Kidani, Inorg. Chem., 1986, 25, 1 CrossRef CAS; J. H. Burchenal, G. Irani, K. Kern, L. Lokys and J. Turkevich, Recent Results Cancer Res., 1980, 74, 146 Search PubMed.
  5. A. M. J. Fichtinger-Schepman, J. L. van der Veer, J. H. J. den Hartog, P. H. M. Lohman and J. Reedijk, Biochemistry, 1985, 24, 707 CrossRef CAS; A. M. J. Fichtinger-Schepman, A. T. van Oosterom, P. H. M. Lohman and F. Berends, Cancer Res., 1987, 47, 3000 CAS.
  6. P. M. Pil and S. J. Lippard, Science, 1992, 256, 234 CAS.
  7. A. L. Pinto and S. J. Lippard, Proc. Natl. Acad. Sci. USA, 1985, 82, 4616 CAS; J. L. van der Veer, G. J. Ligtvoet, H. van den Elst and J. Reedijk, J. Am. Chem. Soc., 1986, 108, 3860 CrossRef CAS.
  8. Y. Qu and N. Farrell, J. Am. Chem. Soc., 1991, 113, 4851 CrossRef CAS; A. J. Kraker, J. D. Hoeschele, W. L. Elliott, H. D. H. Showalter, A. D. Sercel and N. P. Farrell, J. Med. Chem., 1992, 35, 4526 CrossRef CAS.
  9. M. Chikuma, H. Yamane, M. Harikawa, S. Komeda, T. Yamauchi, H. Ohishi and K. Sakaguchi, 30th International Conference on Coordination Chemistry, Kyoto, 24–29th July, 1994. Abstracts of papers (PS4-77), p. 301.
  10. R. Fraggiani, B. Lippert, C. J. Lock and B. Rosenberg, J. Am. Chem. Soc., 1977, 99, 777 CrossRef CAS.
  11. The Universal Crystallographic Computing System (UNICS), Computation Center, Osaka University, 1979.
  12. T. Debaerdemaeker, G. Germain, P. Main, C. Tate and M. M. Woolfson, SAYTAN 87, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diraction Data, Universities of York and Louvain, 1987.
  13. P. Main, G. Germain and M. M. Woolfson, MULTAN 84, A System of Computer Programs for the Automatic Solution of Crystal Structures from X-Ray Diffraction Data, Universities of York and Louvain, 1984.
  14. G. M. Sheldrick, SHELXL 93, Program for Crystal Structure Refinement, University of Göttingen, 1993.
  15. F. J. Dijt, G. W. Canters, J. H. J. den Hartog, A. T. M. Marcelis and J. Reedijk, J. Am. Chem. Soc., 1984, 106, 3644 CrossRef CAS.
  16. P. M. Takahara, A. C. Rosenzweig, C. A. Frederick and S. J. Lippard, Nature (London), 1995, 377, 649 CrossRef CAS.
  17. H. Schöllhorn, G. Raudaschl-Sieber, G. Muller, U. Thewalt and B. Lippert, J. Am. Chem. Soc., 1985, 107, 5932 CrossRef.
  18. S. Arnott and D. W. L. Hukins, Biochem. Biophys. Res. Commun., 1972, 47, 1504 CAS.
  19. T. Mosmann, J. Immunol. Methods, 1983, 65, 55 CrossRef CAS.