Lanthanide complexes of a new sterically hindered potentially hexadentate podand ligand based on a tris(pyrazolyl)borate core; crystal structures, solution structures and luminescence properties

(Note: The full text of this document is currently only available in the PDF Version )

Zoe R. Reeves, Karen L. V. Mann, John C. Jeffery, Jon A. McCleverty, Michael D. Ward, Francesco Barigelletti and Nicola Armaroli


Abstract

The new podand ligand hydrotris[3-(6-methyl)pyridin-2-ylpyrazol-1-yl]borate [L1] was prepared which contains three bidentate pyrazolyl/pyridine arms attached to a {BH} head-group. This ligand differs from an earlier ligand hydrotris[3-(2-pyridyl)pyrazol-1-yl]borate [L2] by the presence of methyl groups attached to the C6 positions of the pyridyl rings, which would interfere with each other sterically if the ligand co-ordinated in a fully hexadentate manner. Instead, crystallographic analysis of the complexes [M(L1)(NO3)2(H2O)] (M = Eu, Tb or Gd) showed that partial dissociation of the podand occurs to relieve this potential steric problem: either one or two of the pyridyl groups are not co-ordinated, such that [L1] is penta- or tetra-dentate, but instead are involved in intramolecular N[hair space][hair space]· · ·[hair space][hair space]H–O hydrogen-bonding interactions with the co-ordinated water molecule. The presence of both structural forms in single crystals of the gadolinium and europium complexes shows that interconversion between them in solution must be facile. Variable-temperature 1H NMR spectra of the diamagnetic lanthanum(III) analogue shows that, whereas all three ligand arms are equivalent on the NMR timescale at high temperatures, at –80 °C there is mirror symmetry in the complex such that two arms are equivalent and the third is different from the other two; this is consistent with the crystalline form in which [L1] is tetradentate with two pendant pyridyl arms, which has pseudo-mirror symmetry. Luminescence studies showed that whereas the ligand-based luminescence is retained in the gadolinium(III) complex, in the europium(III) and terbium(III) complexes the ligand-centred emission is quenched by ligand-to-metal energy transfer, resulting in the usual metal-centred emission spectra. The intensity of the emission from the europium(III) and terbium(III) complexes of [L1] is substantially reduced compared to the emission from the analogous complexes [M(L2)(NO3)2] (M = Eu or Tb) which we ascribe to the sterically induced poorer co-ordination of the podand ligand, resulting in (i) less efficient ligand-to-metal energy transfer, and (ii) co-ordination of labile solvent molecules (H2O) to the metal centres.


References

  1. D. Parker and J. A. G. Williams, J. Chem. Soc., Dalton Trans., 1996, 3613 RSC.
  2. S. Aime, M. Botta, M. Fasano and E. Terreno, Chem. Soc. Rev., 1998, 27, 19 RSC.
  3. N. Sabbatini, M. Guardigli and J.-M. Lehn, Coord. Chem. Rev., 1993, 123, 201 CrossRef CAS.
  4. N. Sabbatini, M. Guardigli and I. Manet, in Handbook on The Physics and Chemistry of Rare Earths, eds. K. A. Gschneidner Jr. and L. Eyring, Elsevier, Amsterdam, 1996, vol. 23 Search PubMed.
  5. B. Alpha, R. Ballardini, V. Balzani, J.-M. Lehn, S. Perathoner and N. Sabbatini, Photochem. Photobiol., 1990, 52, 299 CrossRef CAS.
  6. L. Prodi, M. Maestri, R. Ziessel and V. Balzani, Inorg. Chem., 1991, 30, 3798 CrossRef CAS.
  7. S. L. Wu and DeW. Horrocks Jr., J. Chem. Soc., Dalton Trans., 1997, 1497 RSC.
  8. A. P. de Silva, H. Q. N. Gunaratne, T. E. Rice and S. Steward, Chem. Commun., 1997, 1891 RSC.
  9. M. P. O. Wolbers, F. C. J. M. van Veggel, B. H. M. Snellink-Ruël, J. W. Hofstraat, F. A. J. Geurts and D. N. Reinhoudt, J. Am. Chem. Soc., 1997, 119, 138 CrossRef.
  10. N. Sabbatini, A. Casnati, C. Fischer, R. Girardini, M. Guardigli, I. Manet, G. Sarti and R. Ungaro, Inorg. Chim. Acta, 1996, 252, 19 CrossRef CAS; G. Ulrich, R. Ziessel, I. Manet, M. Guardigli, N. Sabbatini, F. Fraternali and G. Wipff, Chem. Eur J., 1997, 3, 1815 CrossRef CAS.
  11. N. Martin, J.-C. G. Bünzli, V. McKee, C. Piguet and G. Hopfgartner, Inorg. Chem., 1998, 37, 577 CrossRef CAS.
  12. M. Lata, H. Takalo, V.-M. Mukkala and J. Kankare, Inorg. Chim. Acta, 1998, 267, 63 CrossRef CAS.
  13. P. L. Jones, A. J. Amoroso, J. C. Jeffery, J. A. McCleverty, E. Psillakis, L. H. Rees and M. D. Ward, Inorg. Chem., 1997, 36, 10 CrossRef CAS.
  14. N. Armaroli, V. Balzani, F. Barigelletti, M. D. Ward and J. A. McCleverty, Chem. Phys. Lett., 1997, 276, 435 CrossRef CAS.
  15. D. Pubanz, G. González, D. H. Powell and A. E. Merbach, Inorg. Chem., 1995, 34, 4447 CrossRef CAS.
  16. Z. Wang, J. Reibenspies, R. J. Motekaitis and A. E. Martell, J. Chem. Soc., Dalton Trans., 1995, 1511 RSC.
  17. J. E. Parks, B. E. Wagner and R. H. Holm, J. Organomet. Chem., 1973, 56, 53 CrossRef CAS.
  18. SADABS, A program for absorption correction with the Siemens SMART area-detector system, G. M. Sheldrick, University of Göttingen, 1996.
  19. SHELXTL 5.03 program system, Siemens Analytical X-Ray Instruments, Madison, WI, 1995.
  20. J. N. Demas and G. A. Crosby, J. Phys. Chem., 1971, 93, 2841.
  21. K. Nakamaru, Bull. Soc. Chem. Jpn., 1982, 5, 2697.
  22. S. R. Meech and D. J. Philips, J. Photochem., 1983, 23, 193 CrossRef CAS.
  23. Y. Lin and S. A. Lang, Jr., J. Heterocycl. Chem., 1977, 14, 345 CrossRef CAS.
  24. A. Novak, Struct. Bonding (Berlin), 1974, 18, 177 CAS.
  25. D. A. Bardwell, J. C. Jeffery, P. L. Jones, J. A. McCleverty and M. D. Ward, J. Chem. Soc., Dalton Trans., 1995, 2921 RSC.
  26. R. Reisfeld and C. K. Jørgensen, Lasers and Excited States of Rare Earths, Springer, Berlin, 1977 Search PubMed.
  27. W. D. Horrocks and D. R. Sudnick, Acc. Chem. Res., 1981, 14, 384 CrossRef CAS.
Click here to see how this site uses Cookies. View our privacy policy here.