Experimental and abinitio spectra of the persistent carbocation generated upon adsorption of vinylanisole in acid zeolites

(Note: The full text of this document is currently only available in the PDF Version )

Lorenzo Fernández, Vicente Martí and Hermenegildo García


Abstract

Upon adsorption of vinylanisole on acid zeolites, a new species visually characterized by its intense purple color is generated. Recent product studies and optical spectroscopy by Cozens etal. (J. Phys. Chem. B, 1997, 101, 6921) had previously suggested a structure of 1,3-dianisyl-2-buten-1-ylium ion (2) for this species. Herein, we have complemented the reported spectroscopic characterization of the purple species by recording its IR spectrum in a zeolite matrix. In addition, species 2 has also been generated in solution and its most characteristic low-field signals in 13C-NMR measured. Theoretical calculations at the Hartree–Fock and B3LYP levels have been carried out to predict the UV/visible, IR and 13C-NMR spectra for the two more stable stereoisomers of a species such as 2. The good match between the experimental and calculated spectra reinforces the structural assignment of allE-2 as the actual purple species upon incorporation of vinylanisole in acid zeolites. The degree of accuracy of the predicted spectra has been corroborated by performing concurrently the same calculations for two structurally related cations such as 1,3-diphenylpropenylium and 4-methoxyphenylethylium, whose experimental spectroscopic data have already been reported in the literature.


References

  1. See the ‘Ethical Guidelines to Publication of Chemical Research’ in J. Org. Chem., 1996, 61, 27A Search PubMed.
  2. G. A. Olah, A. Burrichter, G. Rasul, M. Hachoumy and G. K. S. Prakash, J. Am. Chem. Soc., 1997, 119, 12929 CrossRef CAS.
  3. G. A. Olah, T. Shamma, A. Burrichter, G. Rasul and G. K. S. Prakash, J. Am. Chem. Soc., 1997, 119, 12923 CrossRef CAS.
  4. G. A. Olah, A. Burrichter, T. Mathew, Y. D. Vankar, G. Rasul and G. K. S. Prakash, Angew. Chem. Int. Edn. Engl., 1997, 36, 1875 CrossRef CAS.
  5. G. A. Olah, A. Burrichter, G. Rasul, K. O. Christe and G. K. S. Prakash, J. Am. Chem. Soc., 1997, 119, 4345 CrossRef CAS.
  6. G. K. S. Prakash, Q. J. Wang, G. Rasul and G. A. Olah, J. Organomet. Chem., 1998, 550, 119 CrossRef CAS.
  7. G. K. S. Prakash, G. Rasul, A. Burrichter, K. K. Laali and G. A. Olah, J. Org. Chem., 1996, 61, 9253 CrossRef CAS.
  8. G. A. Olah, A. Burrichter, G. Rasul, R. Gnann, K. O. Christe and G. K. S. Prakash, J. Am. Chem. Soc., 1997, 119, 8035 CrossRef CAS.
  9. G. A. Olah, G. Rasul and G. K. S. Prakash, J. Organomet. Chem., 1996, 521, 271 CrossRef CAS.
  10. G. A. Olah, G. Rasul, H. A. Buchholz, X. Y. Li and G. K. S. Prakash, Bull. Soc. Chim. Fr., 1995, 132, 569 CAS.
  11. T. Xu, D. H. Barich, P. D. Torres and J. F. Haw, J. Am. Chem. Soc., 1997, 119, 406 CrossRef CAS.
  12. M. L. Cano, V. Fornés, H. García, M. A. Miranda and J. Pérez-Prieto, J. Chem. Soc., Chem. Commun., 1995, 2477 RSC.
  13. H. García, S. García, J. Pérez-Prieto and J. C. Scaiano, J. Phys. Chem., 1996, 100, 18158 CrossRef CAS.
  14. J. Sondermann and H. Kuhn, Chem. Ber., 1966, 99, 2491 CAS.
  15. R. N. Young, B. Brocklehurst and P. Booth, J. Am. Chem. Soc., 1994, 116, 7885 CrossRef CAS.
  16. F. L. Cozens, R. Bogdanova, M. Régimbald, H. García, V. Martí and J. C. Scaiano, J. Phys. Chem. B, 1997, 101, 6921 CrossRef CAS.
  17. V. Fornés, H. García, V. Martí and L. Fernández, Tetrahedron, 1998, 54, 3837.
  18. V. J. Rao, N. Prevost, V. Ramamurthy, M. Kojima and L. J. Johnston, Chem. Commun., 1997, 2209 RSC.
  19. L. H. Little, Infrared Spectra of Adsorbed Molecules, Willmer Brothers Ltd, New York, 1966 Search PubMed.
  20. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez and J. A. Pople, Gaussian 94, Gaussian Inc., Pittsburgh, 1995 Search PubMed.
  21. C. C. J. Roothan, Rev. Mod. Phys., 1951, 23, 69 CrossRef CAS.
  22. L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari and J. A. Pople, J. Phys. Chem., 1990, 93, 2537 CrossRef CAS.
  23. J. A. Pople, M. Head-Gordon, D. J. Fox, K. Raghavachari and L. A. Curtiss, J. Chem. Phys., 1989, 90, 5622 CrossRef CAS.
  24. P. Hohenberg and W. Kohn, Phys. Rev., 1964, 136, B864 Search PubMed.
  25. W. Kohn and L. J. Sham, Phys. Rev., 1965, 140, A1133 Search PubMed.
  26. D. R. Salahub and M. C. Zerner, The Challenge of d and f Electrons, American Chemical Society, Washington DC, 1989 Search PubMed.
  27. R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford University Press, Oxford, 1989 Search PubMed.
  28. J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45, 244 CrossRef.
  29. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B, 1992, 46, 6671 CrossRef CAS.
  30. J. K. Labanowski and J. W. Andzelm, Density Functional Methods in Chemistry, Springer-Verlag, Berlin, 1991 Search PubMed.
  31. C. Sosa and C. Lee, J. Chem. Phys., 1993, 98, 8004 CrossRef CAS.
  32. J. Andzelm and E. Wimmer, J. Chem. Phys., 1992, 96, 1280 CrossRef CAS.
  33. G. E. Scuseria, J. Chem. Phys., 1992, 97, 7528 CrossRef CAS.
  34. A. D. Becke, J. Chem. Phys., 1992, 97, 9173 CrossRef CAS.
  35. A. D. Becke, J. Chem. Phys., 1992, 96, 2155 CrossRef CAS.
  36. P. M. W. Gill, B. G. Johnson, J. A. Pople and M. J. Frisch, Chem. Phys. Lett., 1992, 197, 499 CrossRef CAS.
  37. P. J. Stephens, F. J. Devlin, C. F. Ashvar, C. F. Chabalowski and M. J. Frish, Faraday Discuss., 1994, 103 RSC.
  38. P. J. Stephens, F. J. Devlin, M. J. Frish and C. F. Chabalowski, J. Phys. Chem., 1994, 98, 11623 CrossRef CAS.
  39. A. Ricca and C. W. Bauschlicher Jr, J. Phys. Chem., 1994, 98, 12899 CrossRef CAS.
  40. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724 CrossRef CAS.
  41. W. J. Hehre, R. Ditchfield and J. A. Pople, J. Chem. Phys., 1972, 56, 2257 CrossRef CAS.
  42. P. C. Hariharan and J. A. Pople, Theor. Chim. Acta, 1973, 28, 213 CrossRef CAS.
  43. M. S. Gordon, Chem. Phys. Lett., 1980, 76, 163 CrossRef CAS.
  44. P. C. Hariharan and J. A. Pople, Mol. Phys., 1974, 27, 209 CAS.
  45. H. B. Schlegel, J. Comput. Chem., 1982, 3, 214 CrossRef CAS.
  46. J. J. P. Stewart, MOPAC: A General Molecular Orbital Package, Quantum Chem. Program Exch., 1990 Search PubMed.
  47. K. Wolinski, J. F. Hilton and P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251 CrossRef CAS.
  48. J. L. Dodds, R. McWeeny and A. J. Sadlej, Mol. Phys., 1980, 41, 1419.
  49. R. Ditchfield, Mol. Phys., 1974, 27, 789 CAS.
  50. R. McWeeny, Phys. Rev., 1962, 126, 1028 CrossRef.
  51. F. London, J. Phys. Radium, 1937, 397 Search PubMed.
  52. M. A. Camblor, A. Mifsud and J. Pérez-Pariente, Zeolites, 1991, 11, 792 CAS.
  53. R. J. Argauer and G. R. Landolt, U.S. Pat., 1982, 3 702 886 Search PubMed.
  54. A. Corma, V. Fornés, H. García, V. Martí and M. A. Miranda, Chem. Mater., 1995, 7, 2136 CrossRef CAS.
  55. G. A. Olah and R. J. Spear, J. Am. Chem. Soc., 1975, 97, 1539 CrossRef CAS.
  56. W. G. Miller and C. U. Pittman Jr, J. Org. Chem., 1955, 39, 1955.
  57. C. U. Pittman Jr and W. G. Miller, J. Am. Chem. Soc., 1973, 95, 2947 CrossRef CAS.
  58. According to general textbooks of organic chemistry (see next reference), common values of the relative energy of the cis–trans isomers are in the range of 1–3 kcal mol–1.
  59. J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structures, McGraw-Hill, New York, 1993 Search PubMed.
  60. It has been considered that 1-anisylethyl cation has two extreme conformers in which the methyl groups of the methoxy and ethyl substituents in the para positions are either cis or trans. In this regard the optimized geometry shown in Fig. 3 corresponds to the trans conformation.
  61. G. A. Olah, R. J. Spear and D. A. Forsith, J. Am. Chem. Soc., 1976, 98(20), 6284 CrossRef CAS.
  62. P. K. Das, Chem. Rev., 1993, 93, 119 CrossRef CAS.
  63. R. A. McClelland, C. Chan, F. Cozens, A. Modro and S. Steenken, Angew. Chem., Int. Edn. Engl., 1991, 30, 1337 CrossRef.
  64. S. Lacombe, M. Loudet, A. Dargelos and E. Robertbanchereau, J. Org. Chem., 1998, 63, 2281 CrossRef CAS.
  65. S. J. Dunne, L. A. Summers and E. I. Vonnagyfelsobuki, Coord. Chem. Rev., 1997, 165, 1 CrossRef CAS.
  66. D. A. Hrovat and W. T. Borden, Theochem., 1997, 398, 211 Search PubMed.
  67. S. Yamaguchi and K. Tamao, Bull. Chem. Soc. Jpn., 1996, 69, 2327 CAS.
  68. J. E. Ogara and W. P. Dailey, J. Am. Chem. Soc., 1994, 116, 12016 CrossRef CAS.
  69. R. Flammang, D. Landu, S. Laurent, M. Barbieuxflammang, C. O. Kappe, M. W. Wong and C. Wentrup, J. Am. Chem. Soc., 1994, 116, 2005 CrossRef CAS.
  70. Q. Zhuo, D. J. Clouthier and J. D. Goddard, J. Chem. Phys., 1994, 100, 2924 CrossRef CAS.
  71. I. C. Walker, M. H. Palmer and C. C. Ballard, Chem. Phys., 1992, 167, 61 CrossRef CAS.
  72. M. Belletete, N. Dicesare, M. Leclerc and G. Durocher, Theochem., 1997, 391, 85 CrossRef CAS.
  73. G. Wu, S. Jacobs, M. G. Verbruggen, A. T. H. Lenstra, C. Vanalsenoy, H. J. Geise and L. Vanmeervelt, J. Am. Chem. Soc., 1996, 17, 1245 CrossRef CAS.
  74. J. G. Radziszewski, D. Littmann, V. Balaji, L. Fabry, G. Gross and J. Michl, Organometallics, 1993, 12, 4816 CrossRef CAS.
  75. M. R. Savina, L. L. Lohr and A. H. Francis, Chem. Phys. Lett., 1993, 205, 200 CrossRef CAS.
  76. V. Enchev and G. D. Neykov, Struct. Chem., 1992, 3, 231 CAS.
  77. A. Corma and H. García, Top. Catal., 1998, 6, 127 CrossRef CAS.
  78. R. M. Silverstein, G. C. Bassler and T. C. Morrill, Spectroscopic Identification of Organic Compounds, John Wiley, New York, 1981 Search PubMed.
  79. J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, 1993 Search PubMed.
  80. We have established that steady lamp photolysis of ZSM-5 samples containing 1 produces a shift in their absorption and emission spectra compatible with cis–trans isomerization of the allyl system from the E, E-1 to the E, Z-1 stereoisomer. See ref. 13.
  81. B3LYP has been shown to be a very accurate ab initio method to predict IR spectra. See, among many others, the following three references.
  82. H. Lampert, W. Mikenda and A. Karpfen, J. Phys. Chem. A, 1997, 101, 2254 CrossRef CAS.
  83. A. A. Elazhary and R. H. Hilal, Spectrochim. Acta A, 1997, 53, 1365 CrossRef.
  84. A. A. Elazhary and H. U. Suter, J. Phys. Chem., 1996, 100, 15056 CrossRef.
  85. G. A. Olah, V. P. Reddy, G. Rasul and G. K. S. Prakash, Croat. Chem. Acta, 1992, 65, 721 Search PubMed.
  86. G. A. Olah, A. Burrichter, G. Rasul, A. K. Yudin and G. K. S. Prakash, J. Org. Chem., 1996, 61, 1934 CrossRef CAS.
  87. G. A. Olah, G. Rasul, L. Heiliger and G. K. S. Prakesh, J. Am. Chem. Soc., 1996, 118, 3580 CrossRef CAS.
  88. H.-O. Kalinowski, S. Berger and S. Braun, in The Chemical Shift of Ionic Compounds, John Wiley, Chichester, 1988 Search PubMed.
  89. T. Tao and G. E. Maciel, J. Am. Chem. Soc., 1995, 117, 12889 CrossRef CAS.