Density functional studies of adsorbates in Cu-exchanged zeolites: model comparisons and SOx binding

(Note: The full text of this document is currently only available in the PDF Version )

K C. Hass and W F. Schneider


Abstract

The robustness of density functional theory cluster model predictions for a variety of adsorbate complexes in Cu-exchanged zeolites is tested via systematic comparisons of four different models. Results for O, O2, OH, CO, N2, NOx, and SOx binding, obtained using an Al(OH)4 representation of the zeolite support (Z), are in excellent agreement with analogous results for a larger, Z=Al[OSi(OH)3]4 model. Smaller models, containing either a bare Cu+ ion or a water-ligand representation of Z, perform well for covalently bonded adsorbates such as CO or NO, but yield pronounced differences for adsorbates whose binding has a large electrostatic component. Only the largest model considered is fully adequate for adsorbed H2O because of its ability to form hydrogen bonds to distant framework oxygen. SO2 and SO3 exhibit a variety of binding modes and, under appropriate conditions, lead to highly stable ZCu-SO4 or ZCu-SO4-CuZ complexes. Such complexes are consistent with X-ray absorption data for Cu-ZSM-5 and are most likely responsible for the reversible inhibition of catalytic activity in this material by SO2.


References

  1. M. Iwamoto and N. Mizuno, Proc. Inst. Mech. Eng., 1993, 207-D, 23 Search PubMed.
  2. M. Shelef, Chem. Rev., 1995, 95, 209 CrossRef CAS.
  3. W. F. Schneider, K. C. Hass, R. Ramprasad and J. B. Adams, J. Phys. Chem., 1996, 100, 6032 CrossRef CAS.
  4. K. C. Hass and W. F. Schneider, J. Phys. Chem., 1996, 100, 9292 CrossRef CAS.
  5. R. Ramprasad, W. F. Schneider, K. C. Hass and J. B. Adams, J. Phys. Chem. B, 1997, 101, 1940 CrossRef CAS.
  6. W. F. Schneider, K. C. Hass, R. Ramprasad and J. B. Adams, J. Phys. Chem. B, 1997, 101, 4353 CrossRef CAS.
  7. R. Ramprasad, K. C. Hass, W. F. Schneider and J. B. Adams, J. Phys. Chem. B, 1997, 101, 6903 CrossRef CAS.
  8. W. F. Schneider, K. C. Hass, R. Ramprasad and J. B. Adams, J. Phys. Chem. B, 1998, 102, 3692 CrossRef CAS.
  9. B. R. Goodman, W. F. Schneider, K. C. Hass and J. B. Adams, Catal. Lett., in the press Search PubMed.
  10. D. Sengupta, W. F. Schneider, K. C. Hass and J. B. Adams, in preparation.
  11. B. L. Trout, A. K. Chakraborty and A. T. Bell, J. Phys. Chem., 1996, 100, 4173 CrossRef CAS.
  12. B. L. Trout, A. K. Chakraborty and A. T. Bell, J. Phys. Chem., 1996, 100, 17 582 CrossRef CAS.
  13. A. V. Arbuznikov and G. M. Zhidomirov, Catal. Lett., 1996, 40, 17 CAS.
  14. A. L. Yakovlev, K. M. Neynman, G. M. Zhidomirov and N. Rösch, J. Phys. Chem., 1996, 100, 3482 CrossRef CAS.
  15. Y. Yokomichi, T. Yamabe, H. Ohtsuka and T. Kakumoto, J. Phys. Chem., 1996, 100, 14 424 CrossRef CAS.
  16. R. J. Blint, J. Phys. Chem., 1996, 100, 19 518 CrossRef CAS.
  17. N. U. Zhanpeisov, H. Nakatsuji, M. Hada, H. Nakai and M. Anpo, Catal. Lett., 1996, 42, 173 CAS.
  18. H. V. Brand, A. Redondo and P. J. Hay, J. Phys. Chem., 1997, 101, 7691 Search PubMed.
  19. H. Kobayashi and K. Ohkubo, Appl. Surf. Sci., 1997, 121/122, 111 CrossRef.
  20. K. Teraishi, M. Ishida, J. Irisawa, M. Kume, Y. Takahashi, T. Nakano, H. Nakamura and A. Miyamoto, J. Phys. Chem., 1997, 101, 8079 Search PubMed.
  21. T. Kanougi, H. Tsuruya, Y. Oumi, A. Chatterjee, A. Fahmi, M. Kubo and A. Miyamoto, Appl. Surf. Sci., 1998, 130, 561 CrossRef.
  22. L. Rodriguez-Santiago, M. Sierka, V. Branchadell, M. Sodupe and J. Sauer, J. Am. Chem. Soc., 1998, 120, 1545 CrossRef.
  23. M. J. Rice, A. K. Chakraborty and A. T. Bell, J. Phys. Chem. A, 1998, 102, 7498 CrossRef CAS.
  24. Modern Density Functional Theory: A Tool for Chemistry, ed. J. M. Seminario and P. Politzer, Elsevier, Amsterdam, 1995 and references therein Search PubMed.
  25. H. V. Brand, L. A. Curtiss and L. E. Iton, J. Phys. Chem., 1992, 96, 7725 CrossRef CAS.
  26. E. H. Teunissen, C. Roetti, C. Pisani, A. J. M. de Man, A. P. J. Jansen, R. Orlando, R. A. van Santen and R. Dovesi, Modell. Simul. Mater. Sci. Eng., 1994, 2, 921 Search PubMed.
  27. R. Shah, J. D. Gale, M.-H. Lee and M. C. Payne, Science, 1996, 271, 1395 CAS.
  28. M. Brändle and J. Sauer, J. Am. Chem. Soc., 1998, 120, 1556 CrossRef.
  29. H. Hamada, N. Matsubayashi, H. Shimada, Y. Kintaichi, T. Ito and A. Nishijima, Catal. Lett., 1990, 5, 189 CAS.
  30. E. Y. Choi, I.-S. Nam, Y. G. Kim, J. S. Chung, J. S. Lee and M. Nomura, J. Mol. Catal., 1991, 69, 247 CrossRef CAS.
  31. M. Iwamoto, H. Yahiro, S. Shundo, Y. Yu-u and N. Mizuno, Appl. Catal., 1991, 69, L15 Search PubMed.
  32. K. M. Adams, J. V. Cavataio and R. H. Hammerle, Appl. Catal. B, 1995, 10, 157 CrossRef CAS.
  33. E. J. Baerends, D. E. Ellis and P. Ros, Chem. Phys., 1973, 2, 41 CrossRef CAS.
  34. G. te Velde and E. J. Baerends, J. Comput. Phys., 1992, 99, 84 CrossRef CAS.
  35. S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200 CrossRef CAS.
  36. A. D. Becke, Phys. Rev. A, 1988, 38, 3098 CrossRef CAS.
  37. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822 CrossRef.
  38. R. A. Schoonheydt, Catal. Rev.-Sci. Eng., 1993, 35, 129 Search PubMed.
  39. D. C. Sayle, C. R. A. Catlow, J. D. Gale, M. A. Perrin and P. Nortier, J. Phys. Chem. A, 1997, 101, 3331 CrossRef CAS.
  40. D.-J. Liu and H. J. Robota, Catal. Lett., 1993, 21, 291 CAS.
  41. D.-J. Liu and H. J. Robota, Appl. Catal. B, 1994, 4, 155 CrossRef CAS.
  42. J. Valyon and W. K. Hall, J. Phys. Chem., 1993, 97, 7054 CrossRef CAS.
  43. S. C. Larsen, A. Aylor, A. T. Bell and J. A. Reimer, J. Phys. Chem., 1994, 98, 11 533 CrossRef CAS.
  44. J. Dedecek, Z. Sobalík, Z. Tvaruzková, D. Kauchý and B. Wichterlová, J. Phys. Chem., 1995, 99, 16 327 CrossRef CAS and references therein.
  45. W. Grünert, N. W. Hayes, R. W. Joyner, E. S. Shpiro, M. R. H. Siddiqui and G. N. Baeva, J. Phys. Chem., 1994, 98, 10 832 CrossRef.
  46. T. Beutel, J. Sárkány, G.-D. Lei, J. Y. Ran and W. M. H. Sachtler, J. Phys. Chem., 1996, 100, 845 CrossRef CAS and references therein.
  47. H. Yamashita, M. Matsuoka, K. Tsuji, Y. Shioya, M. Anpo and M. Che, J. Phys. Chem., 1996, 100, 397 CrossRef CAS.
  48. C. Lamberti, S. Bordiga, M. Salvalaggio, G. Spoto, A. Zecchina, F. Geobaldo, G. Vlaic and M. Bellatreccia, J. Phys. Chem. B, 1997, 101, 344 CrossRef.
  49. Adsorbate binding energies reported for the 2-H2O model in the present work thus differ from those in ref. 3, which assumed an unconstrained reference state.
  50. H. van Konigsveld, H. van Bekkum and J. C. Jansen, Acta Crystallogr. B, 1987, 43, 127 CrossRef.
  51. For example, M. Sodupe, C. W. Bauschlicher and T. J. Lee, Chem. Phys. Lett., 1992, 189, 266 Search PubMed for CuCO+, as compared in ref. 3.
  52. Suitable models for quantum chemical studies of exchanged Cu ions in low-silica zeolites have yet to be identified, but would most likely require much larger clusters. Ions in that regime are predominantly Cu2+ and tend to occupy a more limited set of well defined extraframework sites (see ref. 38), with the compensating framework charge more delocalized because of the close proximity between AlT sites.
  53. A. Redondo and P. J. Hay, J. Phys. Chem., 1993, 97, 11 754 CrossRef CAS.
  54. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1984 Search PubMed.
  55. G. Herzberg, Molecular Spectra and Molecular Structure II. Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand Reinhold, New York, 1945 Search PubMed.
  56. M. L. McKee, J. Phys. Chem., 1996, 100, 3473 CrossRef CAS.
  57. A. I. Boldyrev and J. Simons, J. Phys. Chem., 1994, 98, 2298 CrossRef CAS.
  58. S. Hu, J. A. Reimer and A. T. Bell, J. Phys. Chem., 1997, 101, 1869 Search PubMed.
  59. J. Texter, D. H. Strome, R. G. Herman and K. Klier, J. Phys. Chem., 1977, 81, 333 CrossRef CAS.
  60. K. C. Hass, W. F. Schneider, C. M. Estévez and R. D. Bach, Chem. Phys. Lett., 1996, 263, 414 CrossRef CAS.
  61. R. R. Ryan, G. J. Kubas, D. C. Moody and P. G. Eller, in Inorganic Chemistry, Springer-Verlag, Berlin, 1981, p. 47 Search PubMed.
  62. G. Centi, N. Passarini, S. Perathoner and A. Riva, Ind. Eng. Chem. Res., 1992, 31, 1947 CrossRef CAS.
  63. As discussed in A. Stirling, J. Phys. Chem. A, 1998, 102, 6565 Search PubMed there is no general agreement even on the pathways by which spin-forbidden reactions proceed.
  64. T. Yamaguchi, T. Jin and K. Tanabe, J. Phys. Chem., 1986, 90, 3148 CrossRef CAS.
  65. M. Bensitel, M. Waqif, O. Saur and J. C. Lavalley, J. Phys. Chem., 1989, 93, 6581 CrossRef CAS.
  66. J. Twu, C. J. Chuang, K. I. Chang, C. H. Yang and K. H. Chen, Appl. Catal. B, 1997, 12, 309 CrossRef CAS.
  67. J. P. Baxter, M. Grunze and C. W. Kong, J. Vac. Sci. Technol. A, 1988, 6, 1123 CrossRef CAS.
  68. A. Galtayries, J. Grimblot and J.-P. Bonnelle, Surf. Interface Anal., 1996, 24, 345 CrossRef CAS.
  69. R. W. G. Wyckoff, Crystal Structures, Interscience, New York, 2nd ed., 1964, vol. 2, p. 41 Search PubMed.
  70. M. Waqif, O. Saur, J. C. Lavalley, S. Perathoner and G. Centi, J. Phys. Chem., 1991, 95, 4051 CrossRef CAS.
  71. M. B. Padley, C. H. Rochester, G. J. Hutchings and F. King, J. Chem. Soc., Faraday Trans., 1994, 90, 203 RSC.
  72. M. B. Padley, C. H. Rochester, G. J. Hutchings and F. King, J. Chem. Soc., Faraday Trans., 1995, 91, 141 RSC.
Click here to see how this site uses Cookies. View our privacy policy here.