Primary studies of the microsecond pulsed glow discharge as an emission source using a conventional hollow cathode lamp

(Note: The full text of this document is currently only available in the PDF Version )

Xiaomei Yan, Wei Hang, B. W. Smith, J. D. Winefordner and W. W. Harrison


Abstract

Primary investigations on the operation of a glow discharge in the microsecond regime as an emission source have been carried out by using conventional hollow cathode lamps. By passing large currents of short duration repetitively through a conventional hollow cathode lamp, and making use of a gated detection system, light intensity enhancement of up to 3–4 orders of magnitude can be achieved with respect to dc operation. Intensity comparisons have been conducted on 4 hollow cathode lamps, As, Ca, Cu and Ti, for both the analyte and the filler gas species. The effects of variation of pulse conditions were examined in great detail on a Ti lamp. Temporally resolved voltage, current and emission profiles, with the analytical characteristics, demonstrate that micro-second pulsed operation does offer unique analytical advantages.


References

  1. W. W. Harrison, K. R. Hess, R. K. Marcus and F. L. King, Anal. Chem., 1986, 58, 341A CAS.
  2. R. K. Marcus, Glow Discharge Spectroscopies, Plenum Press, New York, USA, 1993 Search PubMed.
  3. W. W. Harrison and W. Hang, Fresenius J. Anal. Chem., 1996, 355, 803 CAS.
  4. J. A. Klingler, P. J. Savickas and W. W. Harrison, J. Am. Soc. Mass Spectrom., 1990, 1, 138 CrossRef CAS.
  5. P. Pan and F. L. King, Anal. Chem., 1993, 65, 3187 CrossRef CAS.
  6. W. Hang, P. Yang, X. Wang, C. Yang, Y. Su and B. Huang, Rapid Commun. Mass Spectrom., 1994, 8, 590 CAS.
  7. W. Hang and W. W. Harrison, J. Anal. At. Spectrom., 1996, 11, 835 RSC.
  8. W. O. Walden, W. Hang, B. W. Smith, J. D. Winefordner and W. W. Harrison, Fresenius J. Anal. Chem., 1996, 355, 442 CAS.
  9. W. Hang, W. O. Walden and W. W. Harrison, Anal. Chem., 1996, 68, 1148 CrossRef CAS.
  10. D. Pollmann, K. Ingeneri and W. W. Harrison, J. Anal. At. Spectrom., 1996, 11, 849 RSC.
  11. J. B. Dawson and D. J. Ellis, Spectrochim. Acta, Part A, 1967, 23, 565 CrossRef CAS.
  12. J. F. Kielkopf, Spectrochim. Acta, Part B, 1971, 26, 371 CrossRef.
  13. D. G. Mitchell and A. Johansson, Spectrochim. Acta, Part B, 1970, 25, 175 CrossRef CAS.
  14. D. G. Mitchell and A. Johansson, Spectrochim. Acta, Part B, 1971, 26, 677 CrossRef CAS.
  15. J. O. Weide and M. L. Parsons, Anal. Lett., 1972, 5, 363 CAS.
  16. N. Omenetto, L. M. Fraser and J. D. Winefordner, Appl. Spectrosc. Rev., 1973, 7, 147 Search PubMed.
  17. M. Glick, B. W. Smith and J. D. Winefordner, Anal. Chem., 1990, 62, 157 CrossRef CAS.
  18. G. J. Dejind and E. H. Piepmeier, Anal. Chem., 1974, 46, 318 CrossRef.
  19. G. J. Dejind and E. H. Piepmeier, Spectrochim. Acta, Part B, 1974, 29, 159 CrossRef.
  20. E. H. Piepmeier and L. de Galan, Spectrochim. Acta, Part B, 1975, 30, 263 CrossRef.
  21. P. B. Farnsworth and J. P. Walters, Spectrochim. Acta, Part B, 1982, 37, 773 CrossRef.
  22. J. A. Strauss, N. P. Ferreira and H. G. C. Human, Spectrochim. Acta, Part B, 1982, 37, 947 CrossRef.
  23. W. Hang and W. W. Harrison, to be published.
  24. B. M. Patel and J. D. Winefordner, Can. J. Spectrosc., 1987, 32, 138 Search PubMed.
  25. W. W. Harrison, W. Hang, X. Yan, K. Ingeneri and C. Shelling, J. Anal. At. Spectrom., 1997, 12, 891 RSC.