Radical-mediated degradation mechanisms of tribromo- and other trihalogenated acetic acids in oxygen-free solutions as studied by radiation chemistry methods

(Note: The full text of this document is currently only available in the PDF Version )

Roman Fliount, Oksana Makogon, Dirk M. Guldi and Klaus-Dieter Asmus


Abstract

˙CBr2CO2- and ˙CCl2CO2- radicals, generated upon one electron reduction of tribromo- and trichloro-acetic acids and ˙CF2CO2- radicals produced from difluoroacetic acid by reaction with ˙OH, exhibit optical absorptions in the UV with λmax at 290 nm (ε = 2580 dm3 mol-1 cm-1), 330 nm (ε = 3000 dm3 mol-1 cm-1) and 310 nm (ε ≈ 660 dm3 mol-1 cm-1), respectively. Mechanistically, the present report focuses on the free-radical-induced degradation of tribromoacetic acid. Absolute rate constants have been determined for the reactions of CBr3CO2- with eaq-, H˙, CO2˙-, ˙CH2OH, CH3˙CHOH, (CH3)2˙COH and ˙CH3 radicals to be k = 1.8 × 1010, 1.5 × 1010, 2.8 × 109, 1.6 × 109, 2.3 × 109, 3.0 × 109 and 3.0 × 107 dm3 mol-1 s-1, respectively. The major fate of ˙CBr2CO2- is self-termination to yield tetrabromosuccinic acid which, however, is unstable and thermally decomposes to HBr, CO2 and tribromoacrylic acid. Dibromofumaric acid, dibromomaleic acid and carbon monoxide were found as minor secondary products, formation of which is explained by a small yield of reductive decomposition of the transient tetrabromosuccinic acid. A complete and mechanistically satisfying material balance is provided for several systems in which CBr3CO2- has been degraded via a variety of radicals under various conditions. ˙OH Radicals do not react directly with CBr3CO2-. They have been shown, however, to contribute indirectly to the degradation of this acid via their reaction with reductively liberated bromide ions. The Br˙ atoms formed in this process are considered to abstract a bromine atom from CBr3CO2- or oxidize the carboxyl function in a one-electron transfer process. The formation of free Br˙ atoms has been recognized by pulse radiolysis through their conjugate dimer radical anions Br2˙-. With respect to the other trihalogenated acids it is noteworthy that CCl3CO2- is efficiently reduced by CO2˙- radicals and that CF3CO2- exhibits a high stability toward γ-irradiation and practically resists any reductive attack.


References

  1. C. R. Pearson, in The Handbook of Environmental Chemistry, vol. 3, Part B, Antropogenic Compounds, ed. O. Hutzinger, Springer-Verlag, Berlin, Heidelberg and New York, 1982, pp. 69–82 Search PubMed.
  2. J. Franklin, Chemosphere, 1993, 27, 1565 CrossRef CAS.
  3. UNEP, 1991, Montreal Protocol 1991 Assessment, Report of the Technology and Economic Assessment Panel, December 1991.
  4. M. Anbar and E. J. Hart, J. Phys. Chem., 1965, 69, 271 CAS.
  5. M. Exner, H. Herrmann, J. Michel and R. Zellner, Proceedings of the AFEAS Workshop on Atmospheric Wet and Dry Deposition of Carbonyl and Haloacetyl Halides, Brussels, Belgium, September 22, 1992.
  6. Y. Mao, C. Schöneich and K.-D. Asmus, J. Phys. Chem., 1991, 85, 10 080 CrossRef.
  7. A. Chemseddine and H. P. Boehm, J. Mol. Catal., 1990, 60, 295 CrossRef CAS.
  8. Y. Morisawa, K. Konishi and M. Kataoka, A method of preserving organic materials from fungal attack and a composition for use in such a method. Japan patent 3364/81, C 07 C 69/65 Search PubMed.
  9. E. Ott, Liebigs Annalen, 1912, 392, 267 Search PubMed.
  10. K.-D. Asmus, Methods Enzymol., 1984, 105, 167 CAS.
  11. E. Janata, Rad. Phys. Chem., 1992, 40, 437 Search PubMed.
  12. J. Mönig and K.-D. Asmus, J. Chem. Soc., Perkin Trans. 2, 1984, 2057 RSC.
  13. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, Phys. Chem. Ref. Data, 1988, 17, 513–886 Search PubMed.
  14. (a) K.-D. Asmus, H. Möckel and A. Henglein, J. Phys. Chem., 1973, 77, 1218 CrossRef CAS; (b) K.-D. Asmus, in Reactive Oxygen Species in Chemistry, Biology, and Medicine, ed. Alexandre Quintanilha, Plenum Publishing Corporation, New York, London, 1988, p. 37 Search PubMed.
  15. P. Wardman, Phys. Chem. Ref. Data, 1989, 18, 1637 Search PubMed.
  16. D. Veltwisch, E. Janata and K.-D. Asmus, J. Chem. Soc., Perkin Trans. 2, 1980, 146 RSC.
  17. M. Lal, C. Schöneich, J. Mönig and K.-D. Asmus, Int. J. Radiat. Biol., 1988, 54, 773 CAS.
  18. M. Anbar and E. J. Hart, J. Phys. Chem., 1965, 69, 271 CAS; Discussions Faraday Soc., 1963, 36, 193 Search PubMed.
  19. R. Mertens and C. v. Sonntag, J. Chem. Soc., Perkin Trans. 2, 1992, 2181 Search PubMed.
  20. M. Lal, J. Mönig and K.-D. Asmus, Free Radical Res. Commun., 1986, 1, 235 Search PubMed.
  21. J. K. Kochi, Free Radicals, Wiley, New York, 1973, vol. 1, p. 410 Search PubMed.
  22. R. H. Schuler, A. L. Hartzell and B. Behar, J. Phys. Chem., 1981, 85, 192 CrossRef CAS.
  23. D. Zehavi and J. Rabani, J. Phys. Chem., 1972, 76, 312 CrossRef.
  24. V. Nagarajan and R. W. Fessenden, J. Phys. Chem., 1985, 89, 2330 CrossRef CAS.
  25. G. Hug, Natl. Stand. Ref. Data Ser., U.S. Natl. Bur. Stand., Report No. 69, 1981 Search PubMed.
  26. M. S. Matheson, W. A. Mulac, J. L. Weeks and J. Rabani, J. Phys. Chem., 1966, 70, 2092 CAS.
  27. H. A. Schwarz and R. W. Dodson, J. Phys. Chem., 1984, 88, 3643 CrossRef CAS.
  28. R. Fliount, O. Makogon, D. M. Guldi and K.-D. Asmus, unpublished results.
  29. A. Rafi and H. C. Sutton, Trans. Faraday Soc., 1965, 61, 877 RSC.
  30. C. v. Sonntag, The Chemical Basis of Radiation Biology, Taylor & Francis, London, 1987 Search PubMed.
  31. J. Mönig, D. Bahnemann and K. D. Asmus, Chem. Biol. Interact., 1983, 47, 15 CrossRef CAS.
  32. R. Köster and K.-D. Asmus, Z. Naturforsch., Teil B, 1971, 26, 1104 Search PubMed.
  33. H. Hungerbühler, K.-D. Asmus, O. Makogon and R. Fliount, AFEAS-Report, Contract No. CTR93-41/P93-110, Brussels, Belgium, 1993.
Click here to see how this site uses Cookies. View our privacy policy here.