Rates of thermolysis of azidobenzenes in solution: large stabilizations of transition states by charge transfer from electron-donor substituents

(Note: The full text of this document is currently only available in the PDF Version )

Leonard K. Dyall, Gerrit L’abbé and Wim Dehaen


Abstract

Introduction of +R type para substituents into azidobenzenes causes very large increases in rate of thermolysis, up to 225-fold. The rates of nitrobenzene solutions at 120 °C follow a Hammett-type linear free energy relationship log k = -5.44 - 2.33σI - 1.48 R+ which indicates conjugative stabilization of a nitrene-like transition state. ortho-Substituents of the +R type causes still larger rate enhancements, up to 456-fold for 2-amino, which identify a special resonance proximity effect. It is suggested that the very high rates reported for such α-azidoheterocycles as 2-azidothiophene are due to similar resonance stabilizations and not to ring-opening concerted with nitrogen loss.


References

  1. L. K. Dyall, in The Chemistry of Functional Groups, Supplement D, eds. S. Patai and Z. Rappoport, Wiley, Chichester, 1983, p. 287 Search PubMed.
  2. E. F. V. Scriven and K. Turnbull, Chem. Rev., 1988, 88, 298.
  3. W. Dehaen and J. Becher, Acta Chem. Scand., Ser. B, 1993, 47, 244 Search PubMed.
  4. M. Funicello, P. Spagnolo and P. Zanirato, Acta Chem. Scand., Ser. B, 1993, 47, 231 Search PubMed.
  5. L. K. Dyall and P. A. S. Smith, Aust. J. Chem., 1990, 43, 997 CAS.
  6. G. L'abbé, L. Dyall, K. Meersman and W. Dehaen, J. Chem. Soc., Perkin Trans. 2, 1994, 2401 RSC.
  7. D. Spinelli and P. Zanirato, J. Chem. Soc., Perkin Trans. 2, 1993, 1129 RSC.
  8. M. Takebayashi and T. Shingaki, Kogyo Kogaku Zasshi, 1961, 64, 469 Search PubMed.
  9. L. K. Dyall, P. M. Suffolk, W. Dehaen and G. L'abbé, J. Chem. Soc., Perkin Trans. 2, 1994, 2115 RSC.
  10. S. Gronowitz and P. Zanirato, J. Chem. Soc., Perkin Trans. 2, 1994, 1815 RSC.
  11. V. P. Mamaev, O. P. Shkurko and S. G. Baram, Prog. Phys. Org. Chem., 1987, 47, 2 Search PubMed.
  12. B. B. Barnes, P. J. Newcombe and R. K. Norris, Aust. J. Chem., 1983, 36, 699.
  13. M. T. Nguyen and D. Sengupta, unpublished work.
  14. L. K. Dyall, Aust. J. Chem., 1975, 28, 2147 CAS.
  15. V. G. Prokudin, Proc. 19th International Pyrotech. Semin., 1994, 262 Search PubMed; Chem. Abstr., 1995, 122, 30853k Search PubMed.
  16. P. A. S. Smith and J. H. Hall, J. Am. Chem. Soc., 1962, 84, 480 CrossRef CAS.
  17. H. C. Brown and Y. Okamoto, J. Am. Chem. Soc., 1958, 80, 4979 CrossRef CAS.
  18. M. Charton, Prog. Phys. Org. Chem., 1981, 13, 119 Search PubMed.
  19. T. W. Campbell, J. Am. Chem. Soc., 1949, 71, 740 CrossRef CAS.
  20. H. H. Hodgson and A. Kershaw, J. Chem. Soc., 1930, 497 RSC.
  21. A. R. Osborn and K. Schofield, J. Chem. Soc., 1955, 2100 RSC.
  22. E. H. F. Escher, H. Robert and G. Guillemette, Helv. Chim. Acta, 1979, 62, 1217 CrossRef CAS.
  23. R. Kreher and U. Bergmann, Z. Naturforsch., Teil B, 1976, 31, 222 Search PubMed.
  24. I. Ugi, H. Perlinger and L. Behringer, Chem. Ber., 1958, 91, 2330 CAS.
  25. P. A. S. Smith, J. H. Hall and R. O. Kan, J. Am. Chem. Soc., 1962, 84, 485 CrossRef CAS.
  26. Dictionary of Organic Compounds, Eyre and Spottiswoode, London, 4th edn., 1965, p. 853 Search PubMed.
  27. W. Reid and F. Muller, Chem. Ber., 1952, 85, 470.
Click here to see how this site uses Cookies. View our privacy policy here.