Spiro-λ4-sulfanes with O-ligands of different electronegativity in axial positions. A comparison of CH2O–SIV–OCO and CH2O–S+IV · · · O[double bond, length as m-dash]C bond systems

(Note: The full text of this document is currently only available in the PDF Version )

Dénes Szabó, István Kapovits, Gyula Argay, Mátyás Czugler, Alajos Kálmán and Tibor Koritsánszky


Abstract

Two novel diaryl(alkoxy)(acyloxy)spiro-λ4-sulfanes (3 and 5) exhibiting isomerism in relation to swapping of the five- and six-membered spiro-rings and two analogous cyclic alkoxysulfonium salts (4 and 6) with intramolecular S · · · O interaction have been prepared and their molecular structures determined by X-ray diffraction. In all cases the arrangement of the ligands about the central sulfur atom shows a slightly distorted trigonal bipyramidal (TBP) geometry. In unsymmetrical spiro-λ4-sulfanes the S–O(alkoxy) and the considerably polarized S–O(acyloxy) bond lengths are 1.686(2) and 2.109(2) Å for 3 and 1.683(2) and 2.047(2) Å for 5, respectively. In the analogous cyclic sulfonium salts the corresponding interatomic distances are 1.645(3) and 2.255(3) Å for 4 and 1.616(2) and 2.349(2) Å for 6, respectively. The sums of the individual S–O interatomic distances found in the investigated spiro-λ4-sulfanes and cyclic alkoxysulfonium salts are 3.795(2) and 3.730(2) Å for 3 and 5, whereas they are 3.900(3) and 3.965(2) Å for 4 and 6, showing a significant difference between the two intervals. The individual S–O(alkoxy), S–O(acyloxy), S · · · O(carbamoyl) and S–Car bond lengths, as well as the Car–S–Car bond angles are compared and discussed. The five- and six-membered spiro-rings assume a flattened envelope and a somewhat inverted half-chair conformation, respectively. The almost linear O–S–O bond system is not affected significantly by the different size of the spiro-rings except the case of sulfur–oxygen nonbonded interaction.


References

  1. L. J. Adzima, E. N. Duesler and J. C. Martin, J. Org. Chem., 1977, 42, 4001 CrossRef CAS.
  2. P. Livant and J. C. Martin, J. Am. Chem. Soc., 1977, 99, 5761 CrossRef CAS.
  3. W. Y. Lam, E. N. Duesler and J. C. Martin, J. Am. Chem. Soc., 1981, 103, 127 CrossRef CAS.
  4. D. Szabó, I. Kapovits, Á. Kucsman, P. Huszthy, Gy. Argay, M. Czugler, V. Fülöp, A. Kálmán, T. Koritsánszky and L. Párkányi, J. Mol. Struct., 1993, 300, 23 CrossRef CAS.
  5. D. Szabó, I. Kapovits, Á. Kucsman, V. Fülöp, M. Czugler and A. Kálmán, Struct. Chem., 1990, 1, 305 CrossRef CAS.
  6. D. Szabó, I. Kapovits, Á. Kucsman, M. Czugler, V. Fülöp and A. Kálmán, Struct. Chem., 1991, 2, 529 CrossRef CAS.
  7. J. G. Ángyán, R. A. Poirier, Á. Kucsman and I. G. Csizmadia, J. Am. Chem. Soc., 1987, 109, 2237 CrossRef CAS.
  8. D. Szabó and I. Kapovits, Sulf. Lett., 1991, 13, 37 Search PubMed.
  9. I. Kapovits, J. Rábai, F. Ruff and Á. Kucsman, Tetrahedron, 1979, 35, 1869 CrossRef CAS.
  10. R. J. Bailey, P. J. Card and H. Schechter, J. Am. Chem. Soc., 1983, 105, 6096 CrossRef CAS.
  11. K. Pelz, I. Jirkovsky, E. Adlerova, J. Metysova and M. Protiva, Collect. Czech. Chem. Commun., 1968, 33, 1895 CAS.
  12. Á. Kucsman, I. Kapovits and B. Tanács, Tetrahedron, 1962, 18, 79 CrossRef.
  13. I. Kapovits, J. Rábai, D. Szabó, K. Czakó, Á. Kucsman, Gy. Argay, V. Fülöp, A. Kálmán, T. Koritsánszky and L. Párkányi, J. Chem. Soc., Perkin Trans. 2, 1993, 847 RSC.
  14. L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, New York, 1960, 3rd edn., p. 221 Search PubMed.
  15. A. Kálmán, Croat. Chem. Acta, 1993, 66, 519 Search PubMed.
  16. Á. Kucsman and I. Kapovits, in Organic Sulfur Chemistry: Theoretical and Experimental Advances, ed. F. Bernardi, I. G. Csizmadia and A. Mangini, Elsevier, Amsterdam, 1985, p. 185 Search PubMed.
  17. F. H. Allen, O. Kennard, D. G. Watson, L. Branner, A. G. Orpen and R. Taylor, J. Chem. Soc., Perkin Trans. 2, 1987, S1 RSC.
  18. D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354 CrossRef CAS.
  19. R. Bucourt, Top. Stereochem., 1974, 8, 159 Search PubMed.
  20. Enraf-Nonius, SDP-Plus Structure Determination Package, Enraf-Nonius, Delft, The Netherlands, 1983.
  21. MOLEN, An Interactive Structure Solution Procedure, Enraf-Nonius, Delft, The Netherlands, 1990.
  22. P. Main, S. J. Fiske, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq and M. M. Woolfson, MULTAN82, A System of Computer Programs for the Automatic Solution of Crystal Structures for X-ray Diffraction Data, Universities of York, England and Louvain, Belgium, 1982.
  23. G. M. Sheldrick, SHELXS(86), Acta Crystallogr., Sect. B, 1990, 46, 467 CrossRef.
  24. G. M. Sheldrick, SHELXL(93) Program for Crystal Structure Refinement, University of Göttingen, Germany, 1994.
Click here to see how this site uses Cookies. View our privacy policy here.