Metal-assisted reactions. Part 27.1 3-Benzyloxy-1,2-benzisothiazole 1,1-dioxide: an unusual ether linkage that does not permit heterogeneous catalytic hydrogenolysis

(Note: The full text of this document is currently only available in the PDF Version )

Amadeu F. Brigas, Pedro M. Goncalves and Robert A. W. Johnstone


Abstract

Aryl or allyl ethers of some heterocyclic systems can be readily hydrogenolysed or cross-coupled catalytically with transition metals to give arenes, alkenes or alkanes. Unexpectedly for transition metals, the corresponding alkyl and, particularly, benzyl ethers are totally inert. An X-ray structure determination on 3-benzyloxy-1,2-benzisothiazole 1,1-dioxide 1 has shown that there is no inherent structural reason for this major difference, apart from the absence of a suitable p-orbital in the benzyl ethers.


References

  1. Part 26. J. A. C. Alves, J. V. Barkley, A. F. Brigas and R. A. W. Johnstone, J. Chem. Soc., Perkin Trans. 2, 1997, 669 Search PubMed.
  2. R. N. Butler, in Comprehensive Heterocyclic Chemistry, vol. 5, Part 4A, ed., K. T. Potts, Pergamon Press, Oxford, 1984, pp. 834–838 and in Comprehensive Heterocyclic Chemistry II, vol. 4, ed., R. C. Storr, Pergamon Press, Oxford, 1996, pp. 672–678 Search PubMed; M. L. Carmellino, M. Montagelo, G. Pagani, F. Pastoni, M. Pregnolato and M. Terrini, J. Med. Chem., 1996, 31, 919 Search PubMed.
  3. A. F. Brigas and R. A. W. Johnstone, Tetrahedron Lett., 1990, 31, 5789 CrossRef CAS; R. A. W. Johnstone and P. J. Price, Tetrahedron, 1985, 41, 2483 CrossRef.
  4. A. F. Brigas and R. A. W. Johnstone, J. Chem. Soc., Chem. Commun., 1994, 1923 RSC.
  5. A. F. Brigas and R. A. W. Johnstone, Acta Crystallogr., Sect. C, 1996, 52, 1293 CrossRef.
  6. J. A. C. Alves, A. F. Brigas and R. A. W. Johnstone, Acta Crystallogr., Sect. C, 1996, 52, 1576 CrossRef.
  7. M. L. S. Cristiano, R. A. W. Johnstone and P. J. Price, J. Chem. Soc., Perkin Trans. 1, 1996, 1453 RSC.
  8. See, for example, P. A. Chaloner, Handbook of Coordination Catalysis in Organic Chemistry, Butterworths, London, 1986, pp. 266–268, 851 Search PubMed; H. M. Colquoun, J. Holton, D. J. Thompson and M. V. Twigg, New Pathways for Organic Synthesis, Plenum Press, New York, 1984, pp. 18–19, 202–203, 234 Search PubMed; P. Knochel, Synlett., 1995, 393 Search PubMed; R. Vanasselt and C. J. Elsevier, Organometallics, 1994, 13, 1972 Search PubMed; V. Galamb, G. Palyi, F. Ungvary, L. Marko, R. Boese and G. Schmid, J. Am. Chem. Soc., 1986, 108, 3344 CrossRef CAS; and see ref. 11, pp. 160–161 CrossRef CAS.
  9. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc., Trans. Perkin 2, 1987, S1–S19 Search PubMed.
  10. For C–O bonds, the bond order n is related to bond length rn by the expression, rn=r1– 0.28ln n, in which r1 is an average length for an aliphatic single C–O bond. Thus, bond order can be estimated from bond length. It has been shown that the equation, Dn=D1×np, relates the bond strength (Dn) for any C–O bond of order n with that of a single C–O bond (D1); the exponent p is very close to 1 and so, Dn=D1×n. See ref. 1 and other leading references therein.
  11. R. A. W. Johnstone, A. H. Wilby and I. D. Entwistle, Chem. Rev., 1985, 85, 129; 164–165.
  12. Molecular Structure Corporation ( 1995), TEXSAN. Single Crystal Structure Analysis Software, Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
  13. For details of the deposition scheme, see ‘Instructions for Authors’, J. Chem. Soc., Perkin Trans. 1, 1997, Issue 1. Any request to the CCDC should quote the full literature citation and the reference number 207/131 Search PubMed.
Click here to see how this site uses Cookies. View our privacy policy here.