Synthesis and pyrolytic behaviour of thiazolidin-2-one 1,1-dioxides

(Note: The full text of this document is currently only available in the PDF Version )

R. Alan Aitken, David P. Armstrong, Ronald H. B. Galt and Shaun T. E. Mesher


Abstract

Four examples of the chiral thiazolidin-2-one 1,1-dioxides 5 have been prepared by reaction of the appropriate amino alcohols 11 with CS2 in aqueous sodium hydroxide to give the thiazolidine-2-thiones 12, followed by oxidation with KMnO4 under phase-transfer conditions in the presence of benzoic acid, either directly or via the thiazolidin-2-ones 13. Upon flash vacuum pyrolysis (FVP) at 650 °C, 5a–c decompose mainly by loss of SO2 to give an alkene and benzyl isocyanate together with other products from fragmentation of the N-benzyl group. A significant minor pathway involves net loss of CO2 and water to give the 2-phenyl-4,5-dihydrothiazoles 21 together with their aromatisation products 22 and 23. A mechanism for this new heterocyclic transformation is proposed involving initial expansion to a cyclic carbamic–sulfinic anhydride (2,1,4-oxathiazin-3-one 1-oxide). The fully assigned 13C NMR spectra are presented for 5, 12 and 13 and the 33S NMR spectrum has been obtained for 5c.


References

  1. R. A. Aitken, I. Gosney and J. I. G. Cadogan, Prog. Heterocycl. Chem., 1992, 4, 1 Search PubMed; 1993, 5, 1.
  2. J. M. Decazes, J. L. Luche, H. B. Kagan, R. Parthasarthy and J. Ohrt, Tetrahedron Lett., 1972, 3633 CrossRef CAS; D. Bellus, Helv. Chim. Acta, 1975, 58, 2509 CrossRef CAS.
  3. M. R. Johnson, M. J. Fazio, D. L. Ward and L. R. Sousa, J. Org. Chem., 1983, 48, 494 CrossRef CAS.
  4. J. M. Bohen and M. M. Joullié, J. Org. Chem., 1973, 38, 2652 CrossRef CAS; W. Hanefeld and M. A. Jalili, Liebigs Ann. Chem., 1986, 1787 Search PubMed.
  5. Preliminary communication, R. A. Aitken, D. P. Armstrong, S. T. E. Mesher and R. H. B. Galt, Tetrahedron Lett., 1994, 35, 6143 Search PubMed.
  6. R. J. Gaul and W. J. Fremuth, US Pat. 3 006 919, 1961; R. J. Gaul and W. J. Fremuth, J. Org. Chem., 1961, 26, 5103 Search PubMed.
  7. D. Delaunay, L. Toupet and M. Le Corre, J. Org. Chem., 1995, 60, 6604 CrossRef CAS.
  8. H. J. Roth and H. Schlump, Arch. Pharm. (Weinheim, Ger.), 1963, 296, 213 Search PubMed.
  9. A. G. M. Barrett, D. H. R. Barton and R. Colle, J. Chem. Soc., Perkin Trans. 1, 1980, 665 RSC For a general discussion of oxidation of these ring systems see: R. A. Aitken, D. P. Armstrong and S. T. E. Mesher, Prog. Heterocycl. Chem., 1990, 2, 1 Search PubMed.
  10. R. A. Aitken, D. P. Armstrong, R. H. B. Galt and S. T. E. Mesher, J. Chem. Soc., Perkin Trans. 1, 1997, 935 RSC.
  11. C. Roussel, J.-L. Stein and F. Beauvais, New J. Chem., 1990, 14, 169 Search PubMed.
  12. K. Schank and F. Werner, Liebigs Ann. Chem., 1979, 1977 Search PubMed.
  13. D. H. R. Barton, D. P. Manly and D. A. Widdowson, J. Chem. Soc., Perkin Trans. 1, 1975, 1568 RSC.
  14. T. C. Farrar, B. M. Trost, S. L. Tang and S. E. Springer-Wilson, J. Am. Chem. Soc., 1985, 107, 262 CrossRef CAS.
  15. G. Barbarella, Prog. Nucl. Magn. Reson. Spectrosc., 1993, 25, 317 CrossRef CAS; S. Berger, S. Braun and H.-O. Kalinowski, NMR Spektroskopie von Nichtmetallen, Thieme, Stuttgart, 1992, vol. 1, p. 119 Search PubMed.
  16. A. Lawson and C. E. Searle, J. Am. Chem. Soc., 1957, 79, 1556 CrossRef.
  17. W. J. M. van Tilborg and R. Plomp, J. Chem. Soc., Chem. Commun., 1977, 130 RSC.
  18. S. Itsuno, K. Ito, A. Hirao and S. Nakahama, J. Chem. Soc., Perkin Trans. 1, 1984, 2887 RSC.
  19. J. R. Piper and T. P. Johnston, J. Org. Chem., 1963, 28, 981 CAS.
  20. J. T. Sharp, I. Gosney and A. G. Rowley, Practical Organic Chemistry, Chapman and Hall, London, 1989, p. 51 Search PubMed.
  21. M. Freifelder, M. B. Moore, M. R. Vernstein and G. R. Stone, J. Am. Chem. Soc., 1958, 80, 4320 CrossRef CAS.
  22. J. Bielawski, S. Brandage and L. Lindblom, J. Heterocycl. Chem., 1978, 15, 97 CAS.
Click here to see how this site uses Cookies. View our privacy policy here.