Exploitation of differential reactivity of the carbon–chlorine bonds in 1,3-dichloroisoquinoline. Routes to new N,N-chelate ligands and 1,3-disubstituted isoquinolines

(Note: The full text of this document is currently only available in the PDF Version )

Alan Ford, Ekkehard Sinn and Simon Woodward


Abstract

Under Pd(PPh3)4 catalysis, coupling of arylboronic acids to the 1-position of 1,3-dichloroisoquinoline takes place, leading exclusively to 1-aryl-3-chloroisoquinolines. This regiochemistry is demonstrated by the crystal structure of 3-chloro-1-(8-methoxy-1-naphthyl)isoquinoline. The 3-chloro group may be modified by nickel-catalysed reaction with Grignard reagents or direct nucleophilic displacement with LiSCH2Ph. Attempted lithiation of the 3-position is not successful (either deprotonation or complex reactivity results). Under zinc reduction in the presence of NiCl2–PPh3 and NaI, the 1-aryl-3-chloroisoquinolines furnish 3,3′-biisoquinolines in good yield.


References

  1. A. Togni and L. M. Venanzi, Agnew. Chem., Int. Ed. Engl., 1994, 33, 497 Search PubMed .
  2. P. H. J. Carlson, T. Katsuki, V. S. Martin and K. B. Sharpless, J. Org. Chem., 1981, 46, 3936 CrossRef CAS .
  3. A. J. Bailey, W. P. Griffith, A. J. P. White and D. J. Williams, J. Chem. Soc., Chem. Commun., 1994, 1833 RSC .
  4. C. Eskernazi, G. Balavoine, F. Meunier and H. Rivière, J. Chem. Soc., Chem. Commun., 1985, 111 Search PubMed .
  5. A. Ford, E. Sinn and S. Woodward, J. Organomet. Chem., 1995, 493, 215 CrossRef CAS .
  6. S. Bennet, S. M. Brown, G. Conole, M. Kessler, S. Rowling, E. Sinn and S. Woodward, J. Chem. Soc., Dalton Trans., 1995, 367 RSC .
  7. M. M. Robison, J. Am. Chem. Soc., 1958, 80, 5481 CrossRef CAS .
  8. G. Simchen, Agnew. Chem., Int. Ed. Engl., 1966, 5, 663 Search PubMed .
  9. G. Simchen and W. Krämer, Chem. Ber., 1969, 102, 3666 CAS .
  10. S. W. Wright, D. L. Hageman and L. D. McClure, J. Org. Chem., 1994, 59, 6095 CrossRef CAS .
  11. J. R. Pedersen, Acta Chem. Scand., Ser. A, 1974, 28, 213 CAS .
  12. M. Hird, G. W. Gray and K. J. Toyne, Mol. Cryst. Liq. Cryst., 1991, 206, 187 CrossRef CAS .
  13. N. W. Alcock, J. M. Brown and D. I. Humes, Tetrahedron: Asymmetry, 1993, 4, 743 CrossRef CAS .
  14. J.-M. Valk, T. D. W. Claridge and J. M. Brown, Tetrahedron: Asymmetry, 1995, 6, 2597 CrossRef CAS .
  15. L.-L. Gundersen, G. Langli and F. Rise, Tetrahedron Lett., 1995, 36, 1945 CrossRef CAS .
  16. I. Mangalagiu, T. Beneche and K. Undheim, Tetrahedron Lett., 1996, 37, 1309 CrossRef CAS .
  17. N. Miyaura, T. Ishiyama, H. Sasaki, M. Ishikawa, M. Satoh and A. Suzuki, J. Am. Chem. Soc., 1989, 111, 314 CrossRef .
  18. M. Kranz, T. Clark and P. Von Rague, J. Org. Chem., 1993, 58, 3317 CrossRef CAS .
  19. I. Colon and D. R. Kelsey, J. Org. Chem., 1986, 51, 2627 CrossRef CAS .
  20. M. Iyoda, H. Otsuka, K. Sato, N. Nisato and M. Oda, Bull. Chem. Soc. Jpn., 1990, 63, 80 CAS .
  21. Y. Yamamoto and A. Yanagi, Chem. Pharm. Bull., 1982, 30, 1731 CAS .
  22. J. R. Blackhouse, H. M. Lowe, E. Sinn, S. Suzuki and S. Woodward, J. Chem. Soc., Dalton Trans., 1995, 1489 RSC .
  23. P. W. R. Corfield, R. J. Doedens and J. A. Ibers, Inorg. Chem., 1967, 6, 197 CrossRef CAS .
  24. C. J. Gilmore, J. Appl. Crystallogr., 1984, 17, 42 CrossRef CAS .
Click here to see how this site uses Cookies. View our privacy policy here.