Synthesis of L-selenocystine, L-[77Se]selenocystine and L-tellurocystine

(Note: The full text of this document is currently only available in the PDF Version )

Emily M. Stocking, Jessie N. Schwarz, Hans Senn, Michael Salzmann and Louis A. Silks


Abstract

Synthetic routes for the synthesis of stable isotope labelled amino acids which contain either a selenium or a tellurium atom have been explored. L-Selenocystine, L-[77Se]selenocystine and L-tellurocystine have been constructed in four steps from commercially available methyl (2S)-2-[(tert-butoxycarbonyl)amino]-3- hydroxypropionate. The sequence of reactions has been successfully scaled up giving significant quantities of the chalcogen based amino acids in fair to good overall yield.


References

  1. J. O. Boles, W. H. Tolleson, J. C. Schmidt, R. B. Dunlap and J. D. Odom, J. Biol. Chem., 1992, 267, 22 217 CAS; P. Gettins and B. C. Crews, J. Biol. Chem., 1992, 266, 4804; K. L. House, R. B. Dunlap, J. D. Odom, A.-P. Wu and D. Hilvert, J. Am. Chem. Soc., 1992, 114, 8573 CrossRef CAS; K. L. House, A. R. Garber, R. B. Dunlap, J. D. Odom, D.-P. Wu and D. Hilvert, Biochemistry, 1993, 32, 3468 CrossRef CAS; M. Salzmann, T. Knaute, L. A. Silks, S. Müller, A. Böck and H. Senn, Second European Conference on Stable Isotope Aided NMR of Biomolecules in Frankfurt (Germany), 3–5 March 1996‘1H and 77Se NMR of 77Se-Labeled Amino Acids and Proteins’; H. Senn, M. Salzmann, L. A. Silks, S. Müller, A. Böck and A. Ross, Gordon Research Conference: Magnetic Resonance in Biology & Medicine, Jan 26th, 1997‘1H and 77Se NMR of 77Se-Labeled Amino Acids and Proteins: Direct Evidence for a Diselenide Bridge in (77Se)2-Thioredoxin’.
  2. W. A. Hendrickson, Science, 1991, 254, 51 CrossRef CAS.
  3. J. O. Boles, L. Lebioda, R. B. Dunlap and J. D. Odom, SAAS Bull. Biochem. Biotechnol., 1995, 8, 29 Search PubMed; J. O. Boles, K. Lewinski, M. G. Kunkle, M. Hatada, L. Lebioda, R. B. Dunlap and J. D. Odom, Acta Crystallogr., Sect. D, 1995, 51, 731 CrossRef; J. O. Boles, K. Lewinski, M. Kunkle, J. D. Odom, M. Hatada, R. B. Dunlap and L. Lebioda, Nat. Struct. Biol., 1994, 1, 283 CrossRef CAS.
  4. N. Budisa, B. Steipe, P. Demange, C. Eckerskorn, J. Kellermann and R. Huber, Eur. J. Biochem., 1995, 230, 788 CAS.
  5. S. Müller, H. Senn, B. Gsell, W. Vetter, C. Baron and A. Böck, Biochemistry, 1994, 33, 3404 CrossRef CAS.
  6. A. Fredga, Sven. Kem. Tidskr., 1936, 48, 160 Search PubMed Also, see reference 7.
  7. H. Tanaka and K. Soda, Methods Enzymol., 1987, 143, 240 CrossRef CAS.
  8. J. Roy, W. Gordon, I. L. Schwartz and R. Walter, J. Org. Chem., 1970, 35, 510 CrossRef CAS.
  9. S. V. Pansare and J. C. Vederas, J. Org. Chem., 1989, 54, 2311 CrossRef CAS.
  10. R. F. W. Jackson, N. Wishart, A. Wood, K. James and M. J. Wythes, J. Org. Chem., 1992, 57, 3397 CrossRef CAS.
  11. R. O. Duthaler, Tetrahedron, 1994, 50, 1539 CrossRef CAS.
  12. For leading references on the use of 77Se NMR spectroscopy for the detection, quantification, and absolute configurational assignment of chiral centres see the following: B. A. Salvatore and A. B. Smith III, Tetrahedron Lett., 1994, 35, 1329 Search PubMed; L. A. Silks, R. B. Dunlap and J. D. Odom, J. Am. Chem. Soc., 1990, 112, 4979 CrossRef CAS; L. A. Silks, J. Peng, J. D. Odom and R. B. Dunlap, J. Chem. Soc., Perkin Trans. 1, 1991, 2495 CrossRef CAS; L. A. Silks, J. Peng, J. D. Odom and R. B. Dunlap, J. Org. Chem., 1991, 56, 6733 RSC; J. Peng, M. E. Barr, D. A. Ashburn, J. D. Odom, R. B. Dunlap and L. A. Silks, J. Org. Chem., 1994, 59, 4977 CrossRef CAS; J. Peng, J. D. Odom, R. B. Dunlap and L. A. Silks, Tetrahedron: Asymmetry, 1994, 5, 1627 CrossRef CAS; R. Wu, J. D. Odom, R. B. Dunlap and L. A. Silks, Tetrahedron: Asymmetry, 1995, 6, 833 CrossRef CAS; J. Peng, M. E. Barr, D. A. Ashburn, L. Lebioda, A. R. Garber, R. A. Martinez, J. D. Odom, R. B. Dunlap and L. A. Silks, J. Org. Chem., 1995, 60, 5540 CrossRef CAS; R. Wu, G. Hernández, J. D. Odom, R. B. Dunlap and L. A. Silks, Chem Commun., 1996, 1125 CrossRef CAS; R. Wu, J. D. Odom, R. B. Dunlap and L. A. Silks, Spectroscopy, 1996, 11(6), 37 RSC.
  13. N. P. Luthra, R. B. Dunlap and J. D. Odom, J. Magn. Reson., 1983, 52, 318 CAS.
  14. W. C. Still, M. Kahn and A. Mitra, J. Org. Chem., 1978, 43, 2923 CrossRef CAS.
  15. D. L. J. Clive, P. C. Anderson, N. Moss and A. Singh, J. Org. Chem., 1982, 47, 1641 CrossRef CAS.
  16. Te-cystine has been identified from fungi growths. See, S. Ramadan, A. A. Razak, A. M. Ragab and M. El-Meleigy, Biol. Trace Elem. Res., 1989, 20(3), 225 Search PubMed For a leading reference for 125Te chemical shifts see: D. H. O'Brien, N. Dereu, R. A. Grigsby, K. J. Irgolic and F. F. Knapp, Jr., Organometallics, 1982, 1, 513 Search PubMed For the use of Te(OH)6 as a reference for 125Te see: L. A. Silks, R. B. Dunlap and J. D. Odom, Synth. Commun., 1990, 21, 1105 Search PubMed 125Te chemical shifts are sensitive to temperature, concentration, solvent and pH. The 125Te chemical shift for 13 is shielded more than expected for a normal ditelluride. One possible explanation is the increased shielding from a γ-situated substituent, especially a nitrogen.