Reducing the Energy Distribution in a Plasma-source Sector-field Mass Spectrometer Interface

(Note: The full text of this document is currently only available in the PDF Version )

Thomas W. Burgoyne, Gary M. Hieftje and Ronald A. Hites


Abstract

Ion-beam kinetic-energy distributions were measured with several sector-field plasma-source mass spectrometer interface configurations. The original interface design produced relative energy distributions of 23% (with an ICP source) and 13% (with a GD source). These relative energy distributions were independent of the interface potential. Accelerating more evenly and over a shorter distance (with a grid installed) in the second vacuum stage dramatically reduced the relative energy distribution but also the signal level. The addition of an ICP torch shield also helped to reduce the relative energy distribution, presumably by lowering the plasma offset voltage. New ion optics were designed with the distance between the apertures leading to the second and third vacuum stages decreased (to roughly 20 mm) and with the majority of the ion-beam acceleration moved from the second to a short distance into the third vacuum region. This configuration reduced the relative ion-beam energy distribution to roughly 5% for both sources but also resulted in some loss of signal.


References

  1. J. A. Olivares and R. S. Houk, Appl. Spectrosc., 1985, 39, 1070 CAS.
  2. J. E. Fulford and D. J. Douglas, Appl. Spectrosc., 1986, 40, 971 CAS.
  3. J. A. Simpson, Rev. Sci. Instrum., 1961, 32, 1283 CAS.
  4. D. M. Chambers and G. M. Hieftje, Spectrochim. Acta, Part B, 1991, 46, 761 CrossRef.
  5. S. D. Tanner, J. Anal. At. Spectrom., 1993, 8, 891 RSC.
  6. P. R. Cable and R. K. Marcus, Appl. Spectrosc., 1995, 49, 917 CAS.
  7. D. C. Duckworth, D. L. Donohue, D. H. Smith, T. A. Lewis and R. K. Marcus, Anal. Chem., 1993, 65, 2478 CAS.
  8. F. H. Strobel and J. Adams, J. Am. Soc. Mass Spectrom., 1995, 6, 1232 CrossRef CAS.
  9. N. Bradshaw, E. F. H. Hall and N. E. Sanderson, J. Anal. At. Spectrom., 1989, 4, 801 RSC.
  10. C.-K. Kim, R. Seki, S. Morita, S. Yamasaki, A. Tsumura, Y. Takaku, Y. Igarashi and M. Yamamoto, J. Anal. At. Spectrom., 1991, 6, 205 RSC.
  11. I. Feldmann, W. Tittes, N. Jakubowski, D. Stuewer and U. Giessmann, J. Anal. At. Spectrom., 1994, 9, 1007 RSC.
  12. U. Giebmann and U. Greb, Fresenius' J. Anal. Chem., 1994, 350, 186 CrossRef CAS.
  13. A. N. Halliday, D. Lee, J. N. Christensen, A. J. Walder, P. A. Freedman, C. E. Jones, C. M. Hall, W. Yi and D. Teagle, Int. J. Mass Spectrom. Ion Processes, 1995, 146–147, 21 CrossRef CAS.
  14. T. W. Burgoyne, G. M. Hieftje and R. A. Hites, Proceedings of the 44th ASMS Conference on Mass Spectrometry and Allied Topics, Portland, OR, May 12–16, 1996, WPC46, American Society for Mass Spectrometry, Santa Fe, NM Search PubMed.
  15. T. W. Burgoyne, G. M. Hieftje and R. A. Hites, J. Am. Soc. Mass Spectrom., 1997, 8, 307 CrossRef CAS.
  16. A. L. Gray, J. Anal. At. Spectrom., 1986, 1, 247 RSC.
  17. K. Sakata and K. Kawabata, Spectrochim. Acta, Part B, 1994, 49, 1027 CrossRef.
  18. P. S. P. Wei and A. Kuppermann, Rev. Sci. Instrum., 1969, 40, 783 CrossRef.
  19. C. L. Enloe and J. R. Shell, Rev. Sci. Instrum., 1992, 63, 1788 CrossRef CAS.
  20. D. P. Myers, M. J. Heintz, P. P. Mahoney and G. M. Hieftje, Appl. Spectrosc., 1994, 48, 1337 CAS.