Depth-resolved Anaylsis of Multilayered Samples by Laser-induced Breakdown Spectrometry

(Note: The full text of this document is currently only available in the PDF Version )

JOSE M. VADILLO and J. J. LASERNA


Abstract

The capability of laser-induced breakdown spectrometry (LIBS) to resolve complex depth profiles is demonstrated. Electrolytically deposited brass samples were analyzed by monitoring the emission corresponding to Cr (357.8 nm), Ni (341.4 nm), Cu (327.4 nm) and Zn (334.5 nm). The nominal thickness of the layers was known, which permitted an estimate of the ablated mass in the range between 150 and 500 nm per pulse depending on the matrix and laser irradiance. Laser irradiance was varied by defocusing, and its effect on the depth-resolution of LIBS was tested. For comparison purposes, a commercial zinc-coated steel was also studied by following the Zn and Fe emission intensity depth profiles with a commercial glow-discharge optical emission spectrometry system to obtain information on the exact location of the Zn–Fe interface (12 µm). The ablation rate in terms of ablated mass per pulse was found to be at the ng per pulse level and depended on the laser pulse irradiance.


References

  1. P. P. Mahoney, G. Li and G. M. Hieftje, J. Anal. At. Spectrom., 1996, 11, 401 RSC.
  2. N. Bordel-García, R. Pereiro-García, M. Fernández-García, A. Sanz-Medel, T. R. Harville and R. K. Marcus, J. Anal. At. Spectrom., 1996, 10, 671 Search PubMed.
  3. J. M. Vadillo, S. Palanco, M. D. Romero and J. J. Laserna, Fresenius' J. Anal. Chem., 1996, 355, 909 CAS.
  4. C. Geertsen, J. L. Lacour, P. Mauchien and L. Pierrad, Spectrochim. Acta, Part B, 1996, 51, 1403 CrossRef.
  5. F. Brech and L. Koss, Appl. Spectrosc., 1962, 16, 59.
  6. L. Moenke-Blankenburg, Laser Microanalysis, Wiley, New York, 1989 Search PubMed.
  7. D. A. Cremers and L. J. Radziemski, in Laser Spectroscopy and its Applications, ed. Radziemski, L. J., Solarz R. W., and Paisner J. A., Marcel Dekker, New York, 1987, p. 351 Search PubMed.
  8. Laser-Induced Plasmas and Applications, ed. Radziemski L. J., and Cremers D. A., Marcel Dekker, New York, 1989 Search PubMed.
  9. L. J. Radziemski, Microchem. J., 1994, 50, 218 CrossRef CAS.
  10. J. M. Vadillo and J. J. Laserna, Talanta, 1996, 43, 1149 CrossRef CAS.
  11. M. Hidalgo, F. Martín and J. J. Laserna, Anal. Chem., 1996, 68, 1095 CrossRef CAS.
  12. D. R. Anderson, C. W. McLeod, T. English and A. T. Smith, Appl. Spectrosc., 1995, 49, 691 CAS.
  13. J. J. Laserna, F. Martín, M. Hidalgo, M. Milán, J. M. Vadillo, L. M. Cabalín and S. Palanco, Quim. Anal., 1996, 14, 45 Search PubMed.
  14. R. Wisbrun, I. Schelchter, R. Niessner, H. Schröder and K. L. Kompa, Anal. Chem., 1994, 66, 2964 CrossRef CAS.
  15. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris and L. E. Foster, Appl. Spectrosc., 1996, 50, 222 CAS.
  16. J. M. Vadillo, M. Milán and J. J. Laserna, Fresenius' J. Anal. Chem., 1996, 355, 10 CrossRef CAS.
  17. R. E. Russo, Appl. Spectrosc., 1995, 49, 14A CAS.
  18. A. Bengtson, A. Eklund, M. Lundholm and A. Saric, J. Anal. At. Spectrom., 1990, 5, 563 RSC.